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Foreword

Although we are now able to integrate many millions of transistors on a single chip, our
ideas of how to use these transistors have changed very little from the time when John von
Neumann first proposed the global memory access, single processor architecture for the
programmable serial digital computer. That concept has dominated the last half century,
and its success has been propelled by the exponential improvement of hardware fabrication
methods reflected in Moore’s Law. However, this progress is now reaching a barrier in
which the cost and technical problems of constructing CMOS circuits at ever smaller feature
sizes is becoming prohibitive. In future, instead of taking gains from transistor count, the
hardware industry will explore how to use the existing counts more effectively by the
interaction of multiple general and specialist processors. In this way, the computer industry
is likely to move toward understanding and implementing more brain-like architectures.

Carver Mead, of Caltech, was one of the pioneers who recognized the inevitability of
this trend. In the 1980s he and his collaborators began to explore how integrated hybrid
analog—digital CMOS circuits could be used to emulate brain-style processing. It has been
a hard journey. Analog computing is difficult because the physics of the material used to
construct the machine plays an important role in the solution of the problem. For example,
it is difficult to control the physical properties of sub-micron-sized devices such that their
analog characteristics are well matched. Another problem is that unlike the bistable digital
circuits, analog circuits have no inherent reference against which signal errors can be
restored. So, at first sight, it appears that digital machines will always have an advantage
over analog ones when high precision and signal reliability are required. :

But why are precision and reliability required? It is indeed surprising that the industry
insists on developing technologies for precise and reliable computation, despite the fact that
brains, which are much more effective than present computers in dealing with real-world
tasks, have a data precision of only a few bits and noisy communications.

One factor underlying the success of brains lies in their use of constraint satisfaction.
For example, it is likely that the fundamental Gestalt Laws of visual perceptual grouping
observed in humans arise from mechanisms that resolve and combine the aspects of an
image that cohere from those that do not. These mechanisms rapidly bootstrap globally
coherent solutions by quickly satisfying local consistency conditions. Consistency depends
on relative computations such as comparison, interpolation, and error feedback, rather than
absolute precision. And, this style of computation is suitable for implementation in densely
parallel hybrid CMOS circuits.

The relevance of this book is that it describes the theory and practical implementa-
tion of constraint satisfaction networks for motion perception. It also presents a principled
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development of a series of analog VLSI chips that go some way toward the solution of
some difficult problems of visual perception, such as the Aperture Problem, and Motion
Segmentation.

These classical problems have usually been approached by algorithms, and simulation,
suitable for implementation only on powerful digital computers. Alan Stocker’s approach
has been to find solutions suitable for implementation on a single or very small number
of electronic chips that are composed predominantly of analog circuitry, and that process
their visual input in real time. His solutions are elegant, and practically useful. The aVLSI
design, fabrication, and subsequent analysis have been performed to the highest standards.
Stocker discusses each of these phases in some detail, so that the reader is able to gain
considerable practical benefit from the author’s experience.

Stocker also makes a number of original contributions in this book. The first is his
extension of the classical Horn and Schunck algorithm for estimation of two-dimensional
optical flow. This algorithm makes use of a brightness and a smoothness constraint. He has
extended the algorithm to include a ‘bias constraint’ that represents the expected motion
in case the visual input signal is unreliable or absent. The second is the implementation of
this algorithm in a fully functional aVLSI chip. And the third is the implementation of a
chip that is able to perform piece-wise smooth optical flow estimation, and so is able (for
example) to segment two adjacent pattern fields that have a motion discontinuity at their
common boundary. The optical flow field remains smooth within each of the segmented
regions.

This book presents a cohesive argument on the use of constraint satisfaction methods
for approximate solution of computationally hard problems. The argument begins with a
useful and informed analysis of the literature, and ends with the fine example of a hybrid
motion-selection chip. This book will be useful to those who have a serious interest in
novel styles of computation, and the special purpose hardware that could support them.

Rodney J. Douglas Ziirich, Switzerland



Preface

It was 1986 when John Tanner and Carver Mead published an article describing one of
the first analog VLSI visual motion sensors. The chip proposed a novel way of solving a
computational problem by a collective parallel effort amongst identical units in a homoge-
neous network. Each unit contributed to the solution according to its own interests and the
final outcome of the system was a collective, overall optimal, solution. When I read the
article for the first time ten years later, this concept did not lose any of its appeal. I was
immediately intrigued by the novel approach and was fascinated enough to spend the next
few years trying to understand and improve this way of computation - despite being told
that the original circuit never really worked, and in general, this form of computation was
not suited for aVLSI implementations.

Luckily, those people were wrong. Working on this concept of collective computation
did not only lead to extensions of the original circuit that actually work robustly under
real-world conditions, it also provided me with the intuition and motivation to address
fundamental questions in understanding biological neural computation. Constraint satisfac-
tion provides a clear way of solving a computational problem with a complex dynamical
network. It provides a motivation for the behavior of such systems by defining the optimal
solution and dynamics for a given task. This is of fundamental importance for the under-
standing of complex systems such as the brain. Addressing the question what the system
is doing is often not sufficient because of its complexity. Rather, we must also address the
functional motivation of the system: why is the system doing what it does?

Now, another ten years later, this book summarizes some of my personal development
in understanding physical computation in networks, either electronic or neural. This book
is intended for physicists, engineers and computational biologists who have a keen interest
in the computational question in physical systems. And if this book finally inspires a young
graduate student to try to understand complex computational systems and the building of
computationally efficient devices then I am very content — even if it takes another ten years
for this to happen.
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Introduction

Our world is a visual world. Visual perception is by far the most important sensory process
by which we gather and extract information from our environment. Light reflected from
objects in our world is a very rich source of information. Its short wavelength and high
transmission speed allow us a spatially accurate and fast localization of reflecting surfaces.
The spectral variations in wavelength and intensity in the reflected light resemble the phys-
ical properties of object surfaces, and provide means to recognize them. The sources that
light our world are usually inhomogeneous. The sun, our natural light source, for example,
is in good approximation a point source. Inhomogeneous light sources cause shadows and
reflectances that are highly correlated with the shape of objects. Thus, knowledge of the
spatial position and extent of the light source enables further extraction of information about
our environment.

Our world is also a world of motion. We and most other animals are moving creatures.
We navigate successfully through a dynamic environment, and we use predominantly visual
information to do so. A sense of motion is crucial for the perception of our own motion in
relation to other moving and static objects in the environment. We must predict accurately
the relative dynamics of objects in the environment in order to plan appropriate actions.
Take for example the following situation that illustrates the nature of such a perceptual
task: the goal-keeper of a football team is facing a direct free-kick toward his goal.! In
order to prevent the opposing team from scoring, he needs an accurate estimate of the
real motion trajectory of the ball such that he can precisely plan and orchestrate his body
movements to catch or deflect the ball appropriately. There is little more than just visual
information available to him in order to solve the task. And once he is in motion the situation
becomes much more complicated because visual motion information now represents the
relative motion between himself and the ball while the important coordinate frame remains

!There are two remarks to make. First, “football” is referred to as the European-style football, also called
“soccer” elsewhere. Second, there is no gender-specific implication here; a male goal-keeper was simply chosen
so-as to represent the sheer majority of goal-keepers on earth. In fact, I particularly would like to include non-
human, artificial goal-keepers as in robotic football (RoboCup [Kitano et al. 1997]).

Analog VLSI Circuits for the Perception of Visual Motion A. A. Stocker
© 2006 John Wiley & Sons, Ltd



2 INTRODUCTION

static (the goal). Yet, despite its difficulty, with appropriate training some of us become
astonishingly good at performing this task.

High performance is important because we live in a highly competitive world. The
survival of the fittest applies to us as to any other living organism, and although the fields
of competition might have slightly shifted and diverted during recent evolutionary history,
we had better catch that free-kick if we want to win the game! This competitive pressure
not only promotes a visual motion perception system that can determine quickly what is
moving where, in which direction, and at what speed; but it also forces this system to be
efficient. Efficiency is crucial in biological systems. It encourages solutions that consume the
smallest amount of resources of time, substrate, and energy. The requirement for efficiency
is advantageous because it drives the system to be quicker, to go further, to last longer,
and to have more resources left to solve and perform other tasks at the same time. Our
goal-keeper does not have much time to compute the trajectory of the ball. Often only
a split second determines a win or a defeat. At the same time he must control his body
movements, watch his team-mates, and possibly shout instructions to the defenders. Thus,
being the complex sensory-motor system he is, he cannot dedicate all of the resources
available to solve a single task.

Compared to human perceptual abilities, nature provides us with even more astonishing
examples of efficient visual motion perception. Consider the various flying insects that
navigate by visual perception. They weigh only fractions of grams, yet they are able to
navigate successfully at high speeds through a complicated environments in which they
must resolve visual motions up to 2000 deg/s. [O’Carroli et al. 1996] — and this using only
a few drops of nectar a day.

1.1 Artificial Autonomous Systems

What dpplies to biological systems applies also to a large extent to any artificial autonomous
system that behaves freely in a real-world> environment. When humankind started to
build artificial autonomous systems, it was commonly accepted that such systems would
become part of our everyday life by the year 2001. Numberless science-fiction stories and
movies have encouraged visions of how such agents should behave and interfere with
human society. Although many of these scenarios seem realistic and desirable, they are
far from becoming reality in the near future. Briefly, we have a rather good sense of
what these agents should be capable of, but we are not able to construct them yet. The
(semi-)autonomous rover of NASA’s recent Mars missions,” or demonstrations of artificial
pets,* confirm that these fragile and slow state-of-the-art systems are not keeping up with
our imagination.

Remarkably, our progress in creating artificial autonomous systems is substantially
slower than the general technological advances in recent history. For example, digital
microprocessors, our dominant computational technology, have exhibited an incredible
development. The integration density literally exploded over the last few decades, and so did

2The term real-world is coined to follow an equivalent logic as the term real-time: a real-world environment
does not really have to be the “real” world but has to capture its principal characteristics.

3 Pathfinder 1997, Mars Exploration Rovers 2004 : http://marsprogram.jpl.nasa.gov

4e.g. AIBO from SONY: htip://'www.sony.net/Products/aibo/
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the density of computational power [Moore 1965]. By contrast, the vast majority of the pre-
dicted scenarios for robots have turned out to be hopelessly unrealistic and over-optimistic.
Why?

In order to answer this question and to understand the limitations of traditional
approaches, we should recall the basic problems faced by an autonomously behaving,
cognitive system. By definition, such a system perceives, takes decisions, and plans actions
on a cognitive level. In doing so, it expresses some degree of intelligence. Our goal-keeper
knows exactly what he has to do in order to defend the free-kick: he has to concentrate on
the ball in order to estimate its trajectory, and then move his body so that he can catch or
deflect the ball. Although his reasoning and perception are cognitive, the immanent inter-
action between him and his environment is of a different, much more physical kind. Here,
photons are hitting the retina, and muscle-force is being applied to the environment. For-
tunately, the goalie is not directly aware of all the individual photons, nor is he in explicit
control of all the individual muscles involved in performing a movement such as catching a
ball. The goal-keeper has a nervous system, and one of its many functions is to instantiate
a transformation layer between the environment and his cognitive mind. The brain reduces
and preprocesses the huge amount of noisy sensory data, categorizes and extracts the rele-
vant information, and translates it into a form that is accessible to cognitive reasoning (see
Figure 1.1). This is the process of perception. In the process of action, a similar yet inverse
transformation must take place. The rather global and unspecific cognitive decisions need
to be resolved into a finely orchestrated ensemble of motor commands for the individual
muscles that then interact with the environment. However, the process of action will not
be addressed further in this book.

At an initial step perception requires sensory transduction. A sensory stage measures the
physical properties of the environment and represents these measurements in a signal the

% + cognition

perception action
? transformation 7
L ®
system | |
real world |
Figure 1.1 Perception and action.

Any cognitive autonomous system needs to transform the physical world through perception
into a cognitive syntax and — vice versa — to transform cognitive language into action. The
computational processes and their implementation involved in this transformation are little
understood but are the key factor for the creation of efficient, artificial, autonomous agents.
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rest of the system can process. It is, however, clear that sensory transduction is not the only
transformation process of perception. Because if it were, the cognitive abilities would be
completely overwhelmed with detailed information. As pointed out, an important purpose
of perception is to reduce the raw sensory data and extract only the relevant information.
This includes tasks such as object recognition, coordinate transformation, motion estima-
tion, and so forth. Perception is the interpretation of sensory information with respect to
the perceptual goal. The sensory stage is typically limited, and sensory information may
be ambiguous and is usually corrupted by noise. Perception, however, must be robust to
noise and resolve ambiguities when they occur. Sometimes, this includes the necessity to
fill in missing information according to expectations, which can sometimes lead to wrong
interpretations: most of us have experienced certainly one or more of the many examples
of perceptual illusions.

Although not described in more detail at this point, perceptional processes often repre-
sent large computational problems that need to be solved in a small amount of time. It is
clear that the efficient implementation of solutions to these tasks crucially determines the
performance of the whole autonomous system. Traditional solutions to these computational
problems almost exclusively rely on the digital computational architecture as outlined by
von Neumann [1945].> Although solutions to all computable problems can be implemented
in the von Neumann framework [Turing 1950], it is questionable that these implementa-
tions are equally efficient. For example, consider the simple operation of adding two analog
variables: a digital implementation of addition requires the digitization of the two values,
the subsequent storage of the two binary strings, and a register that finally performs the
binary addition. Depending on the resolution, the electronic implementation can use up
to several hundred transistors and require multiple processing cycles [Reyneri 2003]. In
contrast, assuming that the two variables are represented by two electrical currents flowing
in two wires, the same addition can be performed by simply connecting the two wires and
relying on Kirchhoff’s current law.

‘The von Neumann framework also favors a particular philosophy of computation. Due
to its completely discrete nature, it forces solutions to be dissected into a large number
of very small and sequential processing steps. While the framework is very successful in
implementing clearly structured, exact mathematical problems, it is unclear if it is well
suited to implement solutions for perceptual problems in autonomous systems. The com-
putational framework and the computational problems simply do not seem to match: on
the one hand the digital, sequential machinery only accepts defined states, and on the
other hand the often ambiguous, perceptual problems require parallel processing of contin-
uous measures.

It may be that digital, sequential computation is a valid concept for building autonomous
artificial systems that are as powerful and intelligent as we imagine. It may be that we can
make up for its inefficiency with the still rapidly growing advances in digital processor
technology. However, I doubt it. But how amazing would the possibilities be if we could
find and develop a more efficient implementation framework? There must be a different,
more efficient way of solving such problems — and that’s what this book is about. It aims
to demonstrate another way of thinking of solutions to these problems and implementing

SIn retrospect, it is remarkable that from the very beginning, John von Neumann referred to his idea of a
computational device as an explanation and even a model of how biological neural networks process information.
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them. And, in fact, the burden to prove that there are indeed other and much more efficient
ways of computation has been carried by someone else — nature.

1.2 Neural Computation and Analog Integrated Circuits

Biological neural networks are examples of wonderfully engineered and efficient compu-
tational systems. When researchers first began to develop mathematical models for how
nervous systems actually compute and process information, they very soon realized that
one of the main reasons for the impressive computational power and efficiency of neural
networks is the collective computation that takes place among their highly connected neu-
rons. In one of the most influential and ground-breaking papers, which arguably initiated
the field of computational neuroscience, McCulloch and Pitts [1943] proved that any finite
logical expression can be realized by networks of very simple, binary computational units.
This was, and still is, an impressive result because it demonstrated that computationally very
limited processing units can perform very complex computations when connected together.
Unfortunately, many researchers concluded therefore that the brain is nothing more than a
big logical device — a digital computer. This is of course not the case because McCulloch
and Pitts’ model is not a good approximation of our brain, which they were well aware of
at the time their work was published.

Another key feature of neuronal structures — which was neglected in McCulloch and
Pitts’ model — is that they make computational use of their intrinsic physical properties.
Neural computation is physical computation. Neural systems do not have a centralized
structure in which memory and hardware, algorithm and computational machinery, are
physically separated. In neurons, the function is the architecture — and vice versa. While
the bare-bone simple McCulloch and Pitts model approximates neurons to be binary and
without any dynamics, real neurons follow the continuous dynamics of their physical prop-
erties and underlying chemical processes and are analog in many respects. Real neurons
have a cell membrane with a capacitance that acts as a low-pass filter to the incoming
signal through its dendrites, they have dendritic trees that non-linearly add signals from
other neurons, and so forth. John Hopfield showed in his classical papers [Hopfield 1982,
Hopfield 1984] that the dynamics of the model neurons in his networks are a crucial pre-
requisite to compute near-optimal solutions for hard optimization problems with recurrent
neural networks [Hopfield and Tank 1985]. More importantly, these networks are very effi-
cient, establishing the solution within a few characteristic time constants of an individual
neuron. And they typically scale very favorably. Network structure and analog process-
ing seem to be two key properties of nervous systems providing them with efficiency and
computational power, but nonetheless two properties that digital computers typically do not
share or exploit. Presumably, nervous systems are very well optimized to solve the kinds
of computational problems that they have to solve to guarantee survival of their whole
organism. So it seems very promising to reveal these optimal computational strategies,
develop a methodology, and transfer it to technology in order to create efficient solutions
for particular classes of computational problems.

It was Carver Mead who, inspired by the course “The Physics of Computation” he jointly
taught with John Hopfield and Richard Feynman at Caltech in 1982, first proposed the idea
of embodying neural computation in silicon analog very large-scale integrated (aVLSI)
circuits, a technology which he initially advanced for the development of integrated digital



