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Preface

Although during the last twenty years a great deal of research has been done on
the subject of system identification, and several very good books have been
written on the subject, it has been felt that several topics of great importance
to practicing engineers as well as control theorists have not appeared in a system-
atic form in a book. This book is an attempt to fill this gap.

Two basic types of models are discussed in this book: (i) models for control
applications, and (ii) models of many physical, biological and socioeconomic
phenomena. Both groups of models are studied by means of differential or
difference equations. In the first group, although it may be possible to obtain
a model by detailed analysis using the basic laws of physics and chemistry, it is
usually preferable to determine the model from the observations of the input
and the output. In the second group, it is not even possible to perform an
analysis due to lack of complete knowledge; in such cases we may obtain sto-
chastic models which are often very useful for understanding the phenomenon.

Even the systems belonging to the first group are generally of the distributed-
parameter and nonlinear type. Although it may be possible to obtain suitable
models using nonlinear partial differential equations, these are, generally, of
little value for practical applications. On the other hand, a suitable linear
lumped-parameter model, can be quite useful within certain limitation of oper-
ating ranges which can be estimated by proper examination. Hence, for such
systems, it is necessary not only to be able to determine a suitable linear lumped-
parameter model, but also to fully understand the conditions under which it is
valid. We try to answer both of these basic questions.

The popular approach of investigating nonlinear systems by means of the
Taylor series expansion of nonlinear operators (for example, Volterra series)
or the describing function method will not be included in this book because
of its limited practical application. Qur approach is to determine suitable
linear models, along with the regions over which they are valid.

The organization of the text will now be discussed. In Chapters 2 to 6, linear
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viii PREFACE

models are presented, including multivariable systems as well as stochastic
models. In Chapter 7, the problem of identification of closed-loop linear sys-
tems is discussed. This is followed, in Chapter 8, by techniques for obtaining
low-order models of high-order systems because of their usefulness in the under-
standing of such systems, as well as for the preliminary design of controllers.
In Chapter 9, we consider the problem of combined state and parameter esti-
mation because of its importance in the adaptive control of complex processes.
Identification of distributed-parameter systems is discussed in Chapter 10.
In Chapter 11 we consider nonlinear lumped-parameter systems, with emphasis
on the determination of regions of bifurcation. Chapter 12 presents the design
of optimal input signals for system identification with special consideration
given to practical limitations. In Chapter 13, we describe methods for deter-
mining the order and the structure of linear models. Diagnostic tests for linear
as well as nonlinear models are presented in Chapter 14. Concluding remarks
along with a list of unsolved problems in the area are given in Chapter 15. A
number of appendices are included to describe some of the theoretical back-
ground, as required.

It may be pointed out that the most of the material in Chapters 5 (multi-
variable systems), 8 (model reduction techniques), 9 (combined state and
parameter estimation), 10 (distributed-parameter systems), 11 (nonlinear sys-
tems), and 12 (design of optimal inputs) appears for the first time in the form
of a book in English in the control literature.

This book will be of value to both practicing engineers as well as students of
control theory. The material has been arranged in such an order that it can be
followed without difficulty by a person who has taken a first course on control
theory and has the usual mathematical background in transform calculus and the
theory of state equations. Most of this material has been used as a graduate
course on system identification at McMaster University and at Tianjin University
in China. The authors are grateful to the former students for finding several
typographical errors.

This work owes a lot to the efforts of many former students. The authors
are indebted to Drs. A. Sen, J. D. Hickin and H. El-Sherief for permission to
reproduce some portions of their Ph.D. theses. The support of the research
by the Natural Sciences and Engineering Research Council of Canada is grate-
fully acknowledged. Discussions with many colleagues were very helpful, and
in particular, the authors would like to thank Dr. B. Beliczynski of the Technical
University of Warsaw, and Drs. J. F. McGregor and J. D. Wright of McMaster
University. The authors are very grateful for the encouragement received from
the late Professor N. S. Rajbman of the Institute of Control Sciences, Moscow.
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Introduction

The problem of system modeling and identification has attracted considerable
attention during the past twenty years mostly because of a large number of
applications in diverse fields like chemical processes, biomedical systems, socio-
economic systems, transportation, ecology, electric power systems, hydrology,
aeronautics, and astronautics. In each of these cases, a model consists basically
of mathematical equations which can be used for understanding the behavior
of the system, and wherever possible, for prediction and control.

Two basic types of modeling problems arise. In the first type one can associ-
ate with each physical phenomenon, a small number of measurable causes (in-
puts) and a small number of measurable effects (outputs). The outputs and the
inputs can generally be related through a set of mathematical equations, in most
cases nonlinear partial differential equations. The determination of these
equations is the problem of modeling in such cases. These can be obtained
either by writing a set of equilibrium equations based on mass and energy bal-
ance and other physical laws, or one may use the “black-box” approach which
consists of determining the equations from the past records of the inputs and the
outputs, Modeling problems of this type appear quite often in engineering
practice. Some typical problems are modeling of (i) a stirred-tank chemical
reactor, (ii) a multimachine electrical power system, (iii) a synchronous-orbit
communications satellite, and (iv) the control mechanism of a nuclear power
reactor. In each of these examples one can easily identify certain input and
output quantities, and then obtain the mathematical model relating them.
Some of these will be discussed in the book in the later chapters.

Another type of modeling problem arises in those situations where although
we can identify a certain quantity as a definite measureable output or effect,
the causes are not so well defined. Some typical examples are (1) the annual
population of the United States, (2) the annual rainfall in a certain country,
(3) the average annual flow in a river, and (4) the daily value of a certain stock
in the stock market. In all these cases, we have available a sequence of outputs,



2 MODELING AND IDENTIFICATION OF DYNAMIC SYSTEMS

which will be called a time series, but the inputs or causes are numerous and not
quite known in addition to often being unobservable. Nevertheless, it is im-
portant to develop a model in order that one may have some understanding of
the process which may be used for planning. The models in such cases are called
stochastic models, due to a certain amount of uncertainty which is unavoidable.

In this book we shall be studying both of these types of modeling problems.
The first will be referred to as the problem of system identification, whereas the
second will be called the problem of stochastic modeling. It must be clearly
understood that the two problems are related closely. Moreover in both cases,
we must be able to choose the best from a set of rival models. This requires
development of methods for testing such models as well as suitable criteria for
deciding on the optimum.

In system identification, we are concerned with the determination of system
models from records of system operation. The problem can be represented
diagrammatically as below

wit)
{* ] nlt)
System ‘ +
“m—ﬂ {unknown) yith
Figure 1.1

where

u(t) is the known input vector of dimension m
Z(t) is the output vector of dimension p

w(t) is the input disturbance vector

n(t) is the observation noise vector

y(t) is the measured output vector of dimension p

Thus, the problem of system identification is the determination of the system
model from records of u(t) and y(t).

At this point it is important to distinguish between the system and its model.
A system is defined as ‘“‘a collection of objects arranged in an ordered form,
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which is, in some sense, purpose or goal directed.” What constitutes a ‘system’
depends upon the viewpoint of the analyst or designer. For instance, an elec-
tronic amplifier consisting of a large number of components may be regarded as
a system by the electronic engineer. On the other hand, the same amplifier may
be one of the many parts of a “feedback control system.” Furthermore, this
feedback control system may be a part of a chemical process (or system) con-
taining many loops of this type. Finally, we may have a plant containing many
such units.

A model may be defined as “a representation of the essential aspects of a
system which presents knowledge of that system in a usable form.” A model,
to be useful, must not be so complicated that it cannot be understood and
thereby be unsuitable for predicting the behavior of the system; at the same time
it must not be trivial to the extent that predictions of the behavior of the system
based on the model are grossly inaccurate.

A fundamental problem in system identification is the choice of the nature
of the model which should be used for the system. The model may be one of
the following types:

(a) linear time-invariant (lumped-parameter)—ordinary linear differential
equations

(b) linear time-varying (lumped parameter)—ordinary linear differential
equations

(c) linear but with distributed parameters—partial differential equations

(d) nonlinear—nonlinear differential equations

Although, in practice, most systems are nonlinear with distributed parameters,
linear models for such systems are often used because of their simplicity. In a
large number of cases, “incremental,” or “piecewise” linear models can be con-
veniently used for approximate understanding of the system. In using such
models, one must be careful and should have an idea of the limits of their
validity. Nevertheless, a great deal of work has been done on obtaining linear
models for systems; so much that often by system identification one under-
stands the determination of the parameters of “‘suitable” linear model for the
system.

Some of the problems in system identification are:

(a) determining the order of the linear model

(b) selection of a suitable criterion for determining the “accuracy” of the
model

(c) designing an input signal which will maximize the accuracy of the esti-
mates of the parameters of the model.
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Although most systems are of the ‘“‘continuous-time” type, the application of
the digital computer for identification makes it desirable to use “discrete-time”
models. Often the determination of the parameters of a discrete-time model is
more straightforward. Furthermore, provided that the sampling interval satisfies
certain conditions, the determination of the continuous-time model from the
discrete-time model is fairly straightforward.

Many applications require “on-line” identification instead of “off-line.” An
identification method is said to be of the “off-line” type when one collects a
large amount of input and output data for the system which may be stored in
a computer or recorded in some manner. These data are then processed in a
batch to estimate the parameters of the model and obtain the best fit according
to a prescribed cost function. In off-line identification, one may often select
the type of input most suitable. Also, there is a greater flexibility in selecting
computational methods without any restriction on computing time. As a result
the accuracy of the estimates can be made fairly high, approaching the Cramer-
Rao bound.

In a number of control applications, especially adaptive control, it is necessary
to identify the system in a fairly short time. An identification scheme is said to
be of the “on-line” type if it satisfies the following conditions:

(a) it does not require a special input

(b) all the data need not be stored

(c) a recursive algorithm is used for adjusting the estimates of the parameter
after each sampling instant

(d) the amount of computation required for “model adjustment” is a fraction
of the sampling period.

It may be added that, in general, on-line methods will not lead to as accurate
models as possible with off-line methods which can use a much larger amount of
data. But in many practical situations one cannot afford to wait for the time
required to collect all the data. Asa matter of fact, it will be recognized that life
is the art of reaching sufficient conclusions from insufficient data. Some typical
examples of situations where one must make an important decision on the basis
of insufficient information are: (i) getting married, (ii) accepting a job, (iii)
hiring a new employee, and (iv) investing in the stock market.

An important application of on-line identification is the development of
the self-tuning regulator, proposed recently by Professor K. Astrom and his
colleagues.

A large variety of methods have been applied to system identification, both
off-line and on-line. The methods can be classified in many ways; one scheme
for classification is given below.
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I. Classical Methods: (mostly off-line)
(a) Frequency Reponse Identification
(b) Impulse response identification by deconvolution
(c) Step response identification
(d) Identification from correlation functions
II. Equation-error Approach: (batch-processing)
(a) Least-squares
(b) Generalized least squares
(¢) Maximum likelihood
(d) Minimum variance
(e) Gradient Methods
III. Model Adjustment Techniques:
(a) Least-squares (recursive)
(b) Generalized least squares (recursive)
(c) Instrumental variables
(d) Bootstrap
(e) Maximum likelihood (recursive)
(f) Correlation (recursive)
(g) Stochastic approximation

In Chapter 2 we shall be discussing the classical methods for system identifica-
tion, which have been known for more than fifteen years.

REFERENCES

Astrom, K. J. and Eykhoff, P. (1971), “System Identification—A Survey,” Automatica, vol.
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Classical Methods of System
ldentification

We shall now consider a number of methods of system identification that are
called classical in the sense that they have been around for a longer time than
the so-called modern methods. The first such method is based on the frequency
response of the system.

2.1 FREQUENCY RESPONSE METHOD

The frequency response method for identification of linear systems is based
upon the familiar Bode diagrams of frequency response.

In this method, sine-wave inputs are applied to the system and the steady-
state output is observed; both the magnitude ratio and the phase shift between
the output and input are measured. These measurements are made over the
entire range of frequencies of interest. If the transfer function of the system
(Figure 2.1) is G(s), then the frequency response is obtained by replacing s by
jw, i.e.,

o) - Y()

G(jw)=M(w) - e (i)

(2.01)

where M is the ratio of the magnitudes, and ¢ is the phase shift between the
output and the input.

The plot of M(w) in decibels against w (log scale), as well as the plot of O(w)
against « (log scale), can then be used for estimating the various break-frequen-
cies (poles and zeros) of the transfer function.

In practical application of this method, one must be able to generate the sine-
wave inputs of various frequencies, and also be able to measure the magnitude
ratios and phase-shifts accurately at these frequencies. The method is applicable

6
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X(s) —————» Gls) ———Yl(s)

Figure 2.1

only to linear stationary processes and assumes off-line identification. Moreover,
the method is applicable only to stable systems, since the frequency-response of
an unstable system cannot be measured in practice.

The estimation of the transfer function is based on approximating the magni-
tude response curves with straight lines of slopes 6n db/octave, where n is an
integer. These give the break frequencies and hence the transfer function, which
is then verified from the phase shift curve. Although the case of real poles or
zeros is quite straightforward, the case of complex poles requires estimating the
damping ratios as well. The following figures illustrate the variation of M and ¢
with the damping ratio.

W
Y wn
¢
O.
-90°
|
I W
-180° — ——
o) ! 10 “n

Figure 2.2. Frequency response curves for a sccond-order system given by

1

Gl = 1+ 2¢sfwg + (s/wp)?
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ExampLE 2.1.1

Consider the frequency response data obtained for a d.c. servomotor/servo-
amplifier combination in an undergraduate control laboratory, as shown below

— e

v servo- (- constant
| amplifier - field
' servo-motor acho—~

enerator V2

Figure 2.3. Identification of a servomotot/servoamplifier combination.

Frequency (Hz) 0.1 02 03 04 0S5 06 07 08 09
20 log |v, /vy 7.1 70 67 64 60 56 51 46 41
<Lv, /v -6.35 -12.6 -18.5 -24.1 -29.2 -33.8 -38.0 -41.8 -45.1

1.0 1.2 1.5 2. 25 3. 4. 5. 7. 10.
3.7 27 14 -06 -23 -3.7 -60 -79-10.8 -13.8
-48.1 -533 -59.1 -659 -703 -734 -774 -79.8 -82.7 -84.9

-12.84

OO

-45°% - - --- - - ,
t
I
t

-90° ' /
ol 09l 10

Figure 2.4
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The frequency response plots are shown in Figure 2.4. By drawing straight-
line asymptotes to the magnitude ratio curve, the break frequency is estimated
as 0.9 Hz. This is confirmed by the phase-shift plot giving phase shift equal to
45° at this frequency. Estimating the d.c. gain as 7.2 decibels the transfer func-
tion is estimated as

107220 2.28 12.89
= = (2.02)
1+s/(2nX0.9) 1+s/1.8m s+5.65

G(s) =

In this case it is rather straightforward to obtain the transfer function because
the model was of the first order. For a system of higher order, it is not so easy
to estimate the transfer function accurately from the frequency response plots;
specially if the poles and zeros are not far apart. The following example will
illustrate the difficulty.

ExAMPLE 2.1.2

Consider the transfer function

(o) = 200(s + 2) (203)

~ (s+4)(s® +10s + 100)

This represents the overall transfer function of a position control servo with a
lead compensator. Samples of the frequency response are given in the follow-
ing table

w 0.1 0.2 0.3 0.4 0.5 0.7 1.0
0log|G] 032 110 204 293 372 49  6.15

<4 G (deg) 4.90 7.43 7.01 4.33 0.16 -10.77 -31.2§

1.5 2.0 2.5 3 4 5 7
595 289  -0.83 -4.15 -945 -13.50 -19.52
-72.22 -106.13 -126.02 -137.64 -150.21 -156.88 -163.92

10 15 20 30 40 50 100
-2581 -3291 -37.92 -4498 -49.98 -53.86 -65.9
-168.51 -172.66 -174.51 -17635 -177.26 -177.81 -178.9

The frequency response curves are shown in Figure 2.5.



