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Preface

In the current state of analysis we may regard these discussions [of past mathematics] as
useless, for they concern forgotten methods, which have given way to others more simple
and more general. However, such discussions may yet retain some interest for those who
like to follow step by step the progress of analysis, and to see how simple and general
methods are born from particular questions and complicated and indirect procedures.'

J.L. Lagrange, Lecons sur le calcul des fonctions, Paris 1806, p. 436.

The early history of the Calculus of variations is a well-beaten track; for instance,
we refer the reader to

The last two chapters of the Calcul des functions of Lagrange [152];

e A Treatise on Isoperimetrical Problems and the Calculus of Variations by
R. Woodhouse, reprinted by Chelsea with the title A History of the Calculus of
Variations in the Eighteenth century, [202];

o The surveys by C. Carathéodory

(1) The beginning of research in the Calculus of variations, [48],
(2) Basel und der Begin der Variationsrechnung, [49],

(3) Einfiihrung in Eulers Arbeiten iiber Variationsrechnung, [50],
and the two volumes

(1) Variationsrechnung, [46],
(2) Geometrische Optik, [47];

'Quoted in [102], the original being

Mais dans 1’état actuel de I’analyse. on peut regarder ces discussions comme inutiles, parceque
elles regardent des méthodes oubliées, comme ayant fait place a d’autres plus simples et plus
générales. Cependant elle peuvent avoir encore quelqu'intérét pour ceux qui aiment suivre pas a
pas les progrés de 1’analyse, et a voir comment les méthodes simple et générales naissent des
questions particuliéres et des procédés indirects et compliqués.

vii
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e the very detailed survey of the history of the one-dimensional calculus of
variations from the origin until the beginning of last century by Geldstine [117],
and by Thiele [193], which includes also some multidimensional calculus;

e the papers by Fraser [102, 104, 105]

Finally, we mention the two introductions to classical calculus of variations [33]
and [112] which contain some historical references.

Nevertheless, we would like to go over once again presenting the most relevant
continental contributions to the calculus of variations in the eighteenth century. Our
main goal is to illustrate the mathematics of its founders. In doing this, we always
follow very closely the original papers in their mathematical context and often in an
almost literal way, adding, when we feel it is useful, our mathematical comment or
complementing their proofs; however, we keep our additions separate from the
original presentation. Here and there, we also comment in terms of modern
mathematics. In fact, we think that this may help the reader to make clearer what
ancient authors were doing, the difficulties they had to face, mistakes they made and
how they were able to handle the matter following their approaches. We added the
final Sect. 7.6 to make the reader, not necessarily an expert, aware of the end of the
story, that is, of how the entire material is treated today.

Our book is addressed not only to historians of mathematics, but also to
mathematicians who want to follow “step by step the progress of analysis™ and to
students of mathematics who, this way, may see the forming of a beautiful theory
and the evolving of mathematical methods and techniques. This way, we hope that
our work may help in getting a better understanding of the mathematical results,
of the methods and techniques to obtain them, as well as of the mathematical
historical context in which it all developed. Of course, in doing that, we take
advantage of the wide literature that we have partly already mentioned and to which
we would like to acknowledge our gratitude.

We now shortly outline the content of each chapter. We begin with an intro-
ductory chapter where, after stating Johann Bernoulli’s challenge that marks the
beginning of the calculus of variations, we briefly illustrate issues that belong to
periods before the challenge and are especially relevant for our story: Fermat's
principle of least action, which plays a crucial role in solving the brachistochrone
problem; how previous minimum problems, as for instance the classical isoperi-
metric problem, differ from the problem of least time descent; what Johann and
Jakob Bernoulli, Leonhard Euler and Joseph Louis Lagrange meant for solutions
of the new minimum problems. Since most of the beginning of the calculus of
variations is based on the notion of “infinitesimal elements™, in Sect. 1.3 we discuss
brieﬂy the notion of “differential” in Leibniz and Euler and, with the aim of clar-
ifying some of the claims of the early papers of the Calculus of variations, we
illustrate in Sect. 1.4 the geometrical and analytical treatment of the cycloid in the
period.

Chapters 2-7 present a systematic, sufficiently complete and, we think, fair
presentation of the works, actually of the mathematics in the relevant tracts of the
Bernoullis, Euler and Lagrange, discussing also their connections, always being
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adherent to the original texts. In particular, Chap. 2 deals with the brachistochrone
problem, Chap. 3 with the isoperimetric problem, according to the fundamental
papers by Johann and Jakob Bernoulli. Chap. 4 deals with the beginning of the
problem of finding geodesics on a surface with the contributions of Johann
Bernoulli, Leonhard Euler and Alexis Clairaut. Chapters 5 and 6 deal with the key
contributions of Euler to the isoperimetric problem, the former presenting the
Memoirs of 1738 and 1741 that contain a famous error and the latter discussing the
celebrated treatise Methodus inveniendi lineas curvas maximi minimive proprietate
gaudentis. Of course, we have no chance of discussing the many in specific min-
imum problems solved by Euler—surely one of the most beautiful and interesting
aspects of the Methodus inveniendi—and we have to confine ourselves to dis-
cussing Euler's general method and illustrating only few examples. Finally, Chap. 7
presents the d-calculus of Lagrange, first in the correspondence Lagrange—Euler and
then in the main analytical treatise of Lagrange, adding a few more results of
Lagrange that, however, belong more to the development of the calculus of vari-
ations in the nineteenth century. We conclude, in Sect. 7.5, with Euler’s paper of
1771 that presents, we might say, the modern way of deriving the Euler—Lagrange
equations expressing the necessary condition for minimality.

Topics in this volume were partially presented in a course—seminar held by the
second author during the academic years 2011-2012 and 2012-2013 at the Scuola
Normale Superiore in Pisa, dedicated to the development of calculus and mechanics
in the cultural context of the eighteenth century. Expanded notes of these courses
appeared as [111]. Special thanks go to friends, colleagues and students who
actively participated contributing with relevant questions and very useful com-
ments. We would like to thank particularly Vieri Benci, Sergio Bernini, Giuseppe
Da Prato, Mauro Di Nasso, Marco Forti, Hykel Hosni and Massimo Mugnai. Also,
we would like to thank Chiara Amadori, Federica D’Angelo, Daniela D’Innocenti
and Andrea Tasini who prepared their master's theses on related topics under the
supervision of the first author.

Finally, special warm thanks go to our friend Hykel Hosni who read the entire
manuscript and helped to improve it with his comments and suggestions.

Last but not least, the second author would like to thank his friends Enrico
Giusti, Stefan Hildebrandt, Giuseppe Modica and Jifi Sou¢ek whom he had the
privilege to collaborate with for many years and who generously shared their ideas
with him.

January 2016 Paolo Freguglia
Mariano Giaquinta
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Chapter 1
Some Introductory Material

Minimum principles constitute one of the most beautiful and widespread paradigm
in philosophy and the sciences. It is strongly related to the so-called principle of
economy —what can be done, can be done simply' —and to the search for optimal
strategies to realize our goals. This aesthetic and pragmatic concept also suggests the
idea that nature proceeds in the simplest and most efficient way. As Newton wrote
in his Principia:

Nature does nothing in vain, and more is in vain when less will serve; for Nature is pleased

with simplicity and affects not the pomp of superfluous causes.

Optimality principles have been used to formulate laws of nature since the very
beginning of science, be it that such principles suit scientists aiming to unification
and simplification of knowledge® or that they seem to reflect the preestablished
harmony of our universe — Euler wrote in his Methodus inveniendi (the first treatise
on calculus of variations):

Because the shape of the whole universe is most perfect and, in fact, designed by the wisest
creator, nothing in all of the world will occur in which no maximum or minimum rule is
somehow shining forth.

I'This is the law of parsimony often attributed to Ockham
Entities are not to be multiplied beyond necessity;
in science it is often stated as
What can be done with fewer assumptions is done in vain with more,
and was elevated to a virtue by Dante Alighieri, De Monarchia, Chapter XIV

All that is superfluous displeases God and nature. All that displeases God and nature is evil.

2Max Born wrote in his Physik im Wandel Meiner Zeit
It is science, not nature, to be economical.
© Springer International Publishing Switzerland 2016 1
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Little persists to date of Leibniz’s belief in the best of all possible worlds and in
the preestablished harmony of the universe; yet it remains the fact that many if not
all laws of nature can be given the form of an extremal principle and many of the
mathematical structures have their sources and their underlying texture in extremal
principles.

The Calculus of variations — so named by Euler after the invention of the §—
calculus by Lagrange, replacing the old denomination isoperimetric problems — is
a field of mathematics which deals with extremal problems, principles and methods
to treat them. To be more detailed:

e It deals with specific minimum problems including, for instance, the study of
geodesics on surfaces and of minimal surfaces both in codimension one or larger
than one, of the gravitational potential and the Dirichlet principle (that Riemann put
at the foundation of the theory of holomorphic functions), of the decomposition
of harmonic differential forms (and the consequent study of the homology of
a manifolds, a purely topological notion, in terms of differential forms), or of
harmonic maps between manifolds, of constrained problems like in optimal control
problems; in fact, specific problems are the key to general methods. In certain
respects, one could say that the Calculus of variations is the art to finding optimal
solutions and to describe their essential properties’.

e The Lagrangian and Hamiltonian formalisms of the calculus that were developed
in the Eighteenth and Nineteenth century turn out to be almost indistinguishable
from the rational mechanics of systems of material points and offer a dual vision of
mechanics and geometric optics; they eventually became the basis for the formu-
lation of physical laws of nature (for continuum mechanics, electromagnetism and
even modern fields theory or quantum mechanics, at least for stationary and con-
servative phenomena, and sometime even for nonconservative ones) and opened
the way to modern symplectic geometry.

e The introduction of the so-called direct methods of the Calculus of variations for
finding minimum points lead to modern functional analysis and geometric measure
theory, and, in particular, to variational methods for the study of elliptic partial
differential equations; while, the so-called global calculus of variations of Morse
allowed to relate the topology of the space of competing functions with the number
of critical points of energy functionals providing in particular existence of critical
points in situations where for example no minimum point exists.

It goes without saying that this list could have been much more detailed in the
topics mentioned, and overall a lot more comprehensive. Indeed after Newton and
~ Leibniz invented calculus, the Calculus of variations grew more than exponentially
both in quantity of relevant contributions and, qualitatively, in terms of providing an
even deeper understanding of structures in mathematics and physics. This growth is
still ongoing and the purpose of the above list of topics is solely that of giving the
readers a feel of how vast the field is, while making them aware of how little of it we
are going to cover.

3 As stated in the Introduction of [112].



1 Some Introductory Material

W

In fact, in this volume, we shall deal only with some relevant issues developed
in the first hundred years of life of Calculus of Variations, that is, in the Eighteenth
century. Indeed, scholars mostly agree that June 1696 is the birth date of the Calculus
of Variations.

1.1 Johann Bernoulli’s Challenge

In June 1696 appeared in the Acta Eruditorum, as an appendix to the paper [19],
Problema novum ad cujus solutionem invitantur [18] in which Johann Bernoulli
challenged the ‘geometers’ to solve the following problem, which he would later call
the brachistochrone problem and is also called the problem of least time descent:

Given points A and B in a vertical plane to find the path AMB down which a movable point M
must, by virtue of its weight, proceed from A to B in the shortest possible time (Figure 1.1).

To the description he added that the problem was relevant to mechanics, despite its
appearence; and observed that its solution is not the straight line AB, but rather a
curve which was very well known to geometers. In conclusion, Bernoulli announced
that if no one had found the solution by the end of the year, he would have provided
his own.

The problem was immediately solved by Leibniz* who also suggested to postpone
the deadline to allow foreigners to receive the issue of Acta Eruditorum since its
delivery outside Germany was apparently slow”®. Johann Bernoulli agreed and in
December 1696 announced (see [183] p. 646-648 for an English translation of the
Groningen Proclamation) that the deadline had been extended to Easter 1967: If no
one had succeeded by then in solving the problem, he would disclose Leibniz’s and
his own solution®.

The May 1697 issue of the Acta Eruditorum appeared with Johann Bernoulli’s
solution on pp. 206-211, with the solution of his brother Jakob Bernoulli on pp.
211-218, with a brief note of presentation by Leibniz’ saying that he would not

4Johann Bernoulli had posed his problem privately to him on 9 June 1696 and Leibniz’s answer is
dated 16 June, see Section 2.3.

5The events connected with the brachistochrone probiem were reported by Johann Bernoulli in a
letter to Henri Basnage sieur de Beauval (1657-1710), editor in Rotterdam from 1687 to 1709 of
the Histoire des Ouvrages des Savants a kind of follower of the Nouvelles de la République des
Lettres de Pierre Bayle (1647-1706); see [22] and [118] pp. 283-290.

SWestfall [200] claims that the challenge was for Newton
Manifestly, both Bernoulli and Leibniz interpreted the silence from June to December as
a demonstration that the problem had baffled Newton. They intended now to demonstrate
their superiority publicly.

See Section 2.4 for more.

7Comunicatio suae pariter duarum alienarum ad esendum sibi primum a dn. Joh. Bernoullio, deinde
a dn. Marchionne Hospitalio communicatarum solutionum problematis curbae celerrimi descensus
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Fig. 1.1 The A
brachistochrone problem.

reproduce his solution since it was similar to that of the Bernoulli brothers®, and
with a discussion of the problem by I’Hopital and Tschirnhaus.

However, the brachistochrone problem was not the first minimum problem in the
history of mathematics, it was not even a new problem, as noticed by Leibniz: Most
part of the third day of the Discorsi e dimostrazioni matematiche intorno a due nuove
scienze attinenti alla meccanica ed ai moti locali by Galilei is dedicated to it”. Thus,
the claim to the effect that the Calculus of variations begun in 1696 requires some
motivation.

1.2 Before Johann Bernoulli

Let us first recall that if two sides of a triangle are different, then the angle opposite
to the bigger side is larger than the angle opposed to the smaller side and, if two
angles of a triangle are different, then the side opposed to the wider angle is longer
than the side opposed to the smaller angle. It follows that in a triangle each side has
length smaller than the sum of the lengths of the other two sides and larger than their
difference, and that a necessary and also sufficient condition in order that x, y and z
be the lengths of the sides of a triangle is that

x<y+z, y<x+z, z<x+Yy.

Another useful and immediate consequence of the above is

(Footnote 7 continued)

" a dn. Joh. Bernoullio geometris publice propositi, una cum solutione sua problematis alterius ab
eodem postea propositi. A French translation is available in [167], pp. 351-358.

$He also noted that “I’Hdpital, Huygens were he alive, Hudde if he had not given up such pursuits,
Newton if he would take the trouble” could also have solved the problem. In fact, Newton had
published his answer anonymously in the January 1697 issue of the Philosophical Transactions;
the paper was republished anonymously in the same issue of the Acta, see Section 2.3 and Section 2.4.
9Johann Bernoulli says in the Letter to Basnage [22] that he did not know about Galilei’s consider-
ations when posing his problem and that he had only learned of Galilei later from Leibniz, a claim
that sounds doubtful on account of the celebrity of Galilei and of his Dimostrazioni.
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1.1 PROPOSITION. We have

(1) among the piecewise-linear paths joining two given points in space the one with
minimal length is the segment joining the two points;

(2) inanisosceles triangle the median, the perpendicular to the base and the bisec-
trix of the vertex angle agree;

(3) given a straight line r and a point P outside r there exists a unique point in r of
minimal distance from P: It is the intersection of P with the perpendicular to r
through P.

1.2.1 Fermat’s Principle of Least Time

In the Optics of Euclid (325-265 BC), we find the by now familiar reflection law of
light: If a light ray is sent toward a mirror, then the angle of incidence equals the angle
of reflection', §; = 6, in Figure 1.2'". In fact this holds not only for a flat mirror but
for a curved mirror as well (angles, of course, being measured with respect to the
tangent line at the point of reflection).

Heron’s principle

Heron of Alexandria'? observed then, in his book on mirrors Catoptrica, that the
reflection principle is a mathematical consequence of a minimum principle (probably
the first occurrence of a minimum principle in mathematical physics) now called

HERON’S PRINCIPLE. In a homogeneous medium, light travels from a source to a
receiver by taking the shortest path.

A simple consequence of Heron’s principle (and of Proposition 1.1) is that in the
absence of obstacles light travels straight and

REFLECTION LAW FOR PLANE MIRRORS. A ray of light is reflected by a plane mirror
in such a way that it remains in the orthogonal plane to the mirror determined by
the ray itself and with an angle of reflection equal to the angle of incidence.

In fact minimality implies that the ray has to lie in the orthogonal plane to the
mirror through A and B, and, see Figure 1.2, if at R we have 6; = 6, then the length

10The law was known also to Archimedes (287-212 BC) who had proved it by symmetry: If 6; # 6,
for instance #; > 6, then, by inverting the direction of the ray, we would get 6, > 6;.

""More precisely, the incident and reflected ray lie in the same plane through the source and the
target and orthogonal to the mirror and #; = 6,, see next paragraph.

12Heron of Alexandria was an encyclopedic scholar who wrote mainly about geometry and mechan-
ics mixing approximate and rigorous procedures. Not much is known about him — determining the
period in which he lived has been one of the most debated question in the mathematical historiog-
raphy —; with sufficient certitude we know that he lived between 100 BC and 100 AC.
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Fig. 1.2 The reflection principle and Heron’s minimum length path.

of the path ARB is smaller than any other path AP followed by PB for any P on the
MIITOor.

Fermat’s principle

The refraction of light when passing from air to water can also be explained or
formulated in terms of a minimum principle, but not as consequence of Heron’s
principle. Quite some time was needed to get to the point. Attempts to formulate a
mathematical description of refraction can be traced as far back as Ptolemy (85-165)
and, later, Kepler (1571-1630) (Dioptrice, 1611), but it was not until the Seventeenth
century that the question was really tackled.

On the basis of experimental evidence in 1621 Willebrord Snell (Snellius) (1580-
1626) formulated the following law, see Figure 1.3,

SNELL’S LAW. The sines of the angles 0; and 0, that the incident and refracted rays
make with the normal to the interface between two different media are proportional,

sin 6;
- = constant,
sin 6,

where the constant, now called the relative index of refraction, is characteristic of
both media on either side of the interface.

Snell observed that if the medium 2 is denser than medium 1 (as for a light ray
travelling from air to water) then the constant is greater than one. That is, sin §; >



