w o SCF TWARE
'ENGINEERING

WITH SYSTEMS ANALYSIS
| AND DESIGN |

DONALD V STEWARD

Software Engineering
with Systems Analysis and Design

Donald V. Steward

California State University, Sacramento

B Brooks/Cole Publishing Company
Monterey, California

Brooks/Cole Publishing Company
A Division of Wadsworth, Inc.

© 1987 by Wadsworth, Inc., Belmont, California 94002. AN rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—
electronic, mechanical, photocopying, recording or otherwise—without the prior written permission of the publisher,
Brooks/Cole Publishing Company, Monterey, California 93940, a division of Wadsworth, Inc.

Printed in the United States of America
1098765432

Library of Congress Cataloging-in-Publication Data

Steward, Donald V.
Software engineering with systems analysis and
design.

Includes index.

1. Computer software. 2. System analysis.
3. System design. 1. Title.
QA76.754.874 1987 005.1 86-26808
ISBN 0-534-07506-1

Sponsoring Editor: Cynthia C. Stormer

Project Development Editors: Jokn Bergez and Liz J. Currie
Marketing Representative: Jitl McGillen

Editorial Associate: Corinne Kibbe

Production Editor: Ellen Brownstein

Manuscript Editor: Jonas Weisel

Permissions Editor: Carline Haga

Interior and Caver Design: Sharon L. Kinghan

Cover Image: Lisa Thompson

Cover Photo: Lee Hocker

Art Coordinator: Sue C. Howard

Interior INustration: Carl Brown

Typesetting. Graphic Typesetting Service

Printing/Binding: The Maple-Vail Book Manufacturing Group

Preface

Software Engineering with Systems Analysis and Design develops the natural
integration between software engineering and systems analysis and design. The
field of software engineering has become increasingly complex. A bewildering
variety of methodologies are currently in use and new methodologies are contin-
ually being developed. This book presents the classical approaches to software
engineering—data flow diagrams, structure charts, Warnier-Orr Diagrams—and
explores many of the newer techniques, such as Trees and higher order software.
Furthermore, it presents an integrated approach that serves to illustrate basic
principles while solving many of the problems intrinsic to the classical methods.
It can be used alone to develop systems or in conjunction with readily-available
computer aids.

Software Engineering with Systems Analysis and Design is written with both
the student and the practitioner in mind. The book is appropriate for classes in
software engineering or systems analysis, as well as in the spectrum of computer
science and management information systems classes. The software engineering
practitioner will find the text a valuable tool for improving his or her current
methods.

The impetus for this book comes from two sources, one in industry and one
in academic life. My twenty years of experience in industry (General Electric
and Burroughs Research Laboratories) and my observations of senior projects at
California State University, Sacramento, convinced me that students are fre-
quently ili-prepared for the real-world problem solving they encounter when they
graduate. This realization was the main motivation for my developing the course
in software engineering that is now required of all computer science majors at
CSUS. It has also guided my approach in the text.

viii

PREFACE

Organization and Features

Software Engineering with Systems Analysis and Design is divided into five parts:

Part 1 introduces the principles used throughout the rest of the book;

Part 2 develops techniques for describing the product and working with its
requirements and design;

Part 3 describes how the project is managed,

Part 4 examines information-systems technologies; and

Part 5 applies the techniques developed in the previous parts to each phase of
the project.

Part 1 should be read first. Parts 2, 3, and 4 may be read in any order. Part 5
builds on the principles developed in Parts 1 through 4 and should be read in
conjunction with the case study in the appendix.

The integrated approach presented here is supported by such unifying themes
as the tree, which is used as a hierarchical representation of systems or programs;
matching requirements and means; and the role of expectations in project man-
agement. The reader is introduced to needs and feasibility analyses, Two-Entity
Data Flow Diagrams, Trees, and structured design, and then learns how these
techniques can be extended and integrated throughout the entire software devel-
opment life cycle. This approach shows the reader how to simplify transitions
between phases in the life cycle, improve traceability, provide progress reports
to managers, and estimate, plan, schedule, and control projects. Principles and
general methods are presented first, followed by step-by-step applications of these
methods through the phases of the project. The need for up-front planning is
emphasized and methods of representation and progress measurement are pro-
vided. Also included in this book are chapters on problem definition, cost, and
feasibility, topics that are often omitted or underplayed in other software engi-
neering books. A case study at the end of the book provides a practical model
for the concepts presented in the text.

To the Software Engineering Practitioner

There are currently many software engineering tools in use (data flow diagrams,
structure charts, Warnier-Orr Diagrams, entity relation diagrams, state transition
diagrams), each with its own application to a specific aspect of the system. If we
use structure charts, we do structured design but, if we use Warnier-Orr Dia-
grams, we probably don’t. We may use data flow diagrams and structured English
for requirements, structure charts for design, and pseudocode and a high-level
programming language for implementation. With all these methods in use on the
same project and different methods in use during each phase, it is very difficult
to provide consistency of representation, to ensure that ideas and work are not

PREFACE ix

lost when converting from one method to another, and to track the progress of
the entire project throughout its life cycle. It is also difficult to ensure that the
requirements developed at the beginning of the project have been preserved in
the end product, harder still to collect data that will aid in estimating future
projects, and very difficult to use computer aids.

This book provides a means of using both the conventional and newer, more
powerful methods of software engineering more effectively. It presents an inte-
grated approach, based on the fundamental concepts of the classical approach,
that can greatly increase productivity. The integrated approach provides the fol-
lowing advantages:

1. a consistent measure of progress throughout the entire cycle, from require-
ments to code generation

2. a means of tracking requirements throughout the cycle, ensuring that no
requirements are lost from one phase to the next

3. a method of representation (tree editors) that does not have to be modified
from one phase to another

4. a means of calculating metrics using computers

5. a method of collecting data automatically as the system develops

6. a method that can be implemented with computer aids.

In short, the integrated approach presented here will help the software engineering
practitioner incorporate the methods he or she already uses with those that are
newly developed and those that undoubtedly will be developed as the field of
software engineering continues to grow.

0t ——————— ..

Acknowledgments

There are many people to whom I owe a debt of gratitude for their valuable
suggestions and contributions along the way. On our faculty at CSUS, I wish to
thank: Richard Hill, Robert Buckley, Martin Meyers, Ronald Ernst, Nancy Miner,
and Joan Al-Kazily. At Brooks/Cole, Ellen Brownstein, Mike Needham, Cindy
Stormer, and Neil Oatley have lent that vital assistance needed to turn these ideas
into a book.

Thanks are also due to the reviewers of this book: Meledath Damodaran,
University of Bridgeport; Richard Hill, California State University, Sacramento;
Gregory Jones, Utah State University, Logan; William Junk, University of Idaho,
Moscow; Richard LeBlanc, Georgia Institute of Technology, Atlanta; Christopher
Pidgeon, University of California, Irvine; Vaclav Rajlich, Wayne State Univer-
sity, Detroit; K. V. K. Reddy, McNeese State University, Lake Charles, Louisiana;
Paul Ross, Millersville State College, Millersville, Pennsylvania; and Stephen
Thebaut, University of Florida, Gainesville.

Donald V. Steward

Contents

PART 1
Introducing Software Engineering

1 What Is Sottware Engineering?
What Does Software Engineering Involve? 4
What Is a Successful Software Development Project? 4
Why Do We Need Software Engineering? 5
How Do We Define Software Engineering? 8

What Are the Characteristics of Software Engineering
Projects? 10

How Is Software Engineering Evolving? 11
Summary 12

Exercises 13

References 13

2 Software Engineering Principles
The Definition of Expectations 15
From Requirements to Design and Analysis 19
Dealing with Complexity 20
Importance of Up-Front Planning 25
Managing with the Project Life Cycle 27

14

CONTENTS xi

Controlling the Project 33
Concern for Quality 35
Summary 38

Exercises 40

References 43

PART 2
Describing the Product 45
3 Data Flow Diagrams and Matrices 47
Data Flow Diagrams—Basic Concepts 48
DeMarco Data Flow Diagrams 49
Two-Entity Data Flow Diagrams 51
Matrices and Data Bases 67
Summary 78
Exercises 78
References 81
4 Tree Structures 82

Structure Charts 83

Warnier-Orr Diagrams 83

Trees 88

Data Flow and Structured Design in the Tree 94
Transforming Data Flow Diagrams into Trees 97
Trees and Top-Down Development 103

Using Trees for Data Structures 112

Tree Metrics 113

Summary 115

Exercises 117

References 118

Managing the Software Development Process

5 Managing People and Expectations

From Past Failures to New Expectations 124
Working within Constraints and Capabilities 125
Managing Expectations 126

Information and Decision Handling in the Organization

Reception to Change 133
Developing the Organization 135
Management Skills 137
Summary 140

Exercises 141

References 141

Estimating the Project
Constraints of Management 144
Mythical Person-Month 145
Estimation Methods 146
Improved Methods 150
Summary 161

Exercises 162

References 163

Scheduling and Controlling the Project
Graphs, Trees, and Networks 165

Critical Path Scheduling 166

Precedence and 1J Networks 168

Design Structure System 170

Project Tracking and Control 176

Reviews 182

121
123

143

164

CONTENTS xiii

Configuration and Change Control 183
Summary 184

Exercises 185

References 187

PART 4
Applying the Technology

189

8 Technical Considerations in Analysis and Design 191

Technologies Used in Information Processing

Security and Control 202
Performance Analysis 206
Summary 211

Exercises 212

References 213

9@ User Intertaces

Principles for Developing User Friendly Interfaces

Rapid Prototyping 222
Summary 224
Exercises 225
References 225

PART S
Stepping through the Process

10 Documenting the Project
Document Structure 230
Writing Organization 231

214
215

227
229

xiv

CONTENTS

11

12

13

Knowing Our Readers 232
Writing Style for Documents 233
Process of Writing 234

Tools that Help in Writing 235
Summary 236

Exercises 236

References 237

Planning the Project
Configuration Management Plan 239
Quality Management Plan 240
Project Management Plan 240
Standards and Procedures Guide 246
Summary 249

Exercises 249

References 250

Analyzing the Current System and Expectations
Considering Change 252

Preliminary Study 253

Fact-Finding Methods 257

Models for Organizing Information 262
What to Look for 267

The Preliminary Study Report 269
Project Requests and Proposals 272
Summary 273

Exercises 274

References 275

Specitying Requirements
Client Involvement 279
Properties of the Requirements 280

238

251

277

CONTENTS xv

14

15

Properties of the Requirements Specification Document 283
External Dimensions of the Product 284

Hierarchical Specification of Requirements 285

Outline of the Requirements Specification Document 289
User’s Manual 291

Summary 293

Exercises 294

References 294

Appraising Feasibility and Cost 295

Constraints and Feasibility: A Linear Programming
Analogy 297

Finding Alternatives 300

Prototyping 301

Accounting for Costs 301

Choosing the Best Alternative 308

Outline of the Feasibility Study Report 310
Summary 312

Exercises 312

References 313

Designing the System 314
The Nature of Design 315

Two Models of Design 317

The Design Process 319

Design of Algorithms 323

Design Strategies for Information Systems 330

Structured Design: Coupling and Cohesion 333

Tools of Design 336

Physical Design 337

Technical Considerations in Design 337

xvi

CONTENTS

16

17

Design Estimation 338

Outline of Design Specification 339
Summary 343

Exercises 344

References 345

Implementation 347
The Purchasing Process 348

Several Approaches to Building 349

Integration of Implementation and Testing 350

Performance Analysis 352

Preparing for the New System 353

Switch-Over 354

Summary 355

Exercises 356

References 356

Testing and Maintenance 357
Modes of Failure 358

Maintenance 359

Testing—The Battle with Combinatorics 360

Test Coverage Monitoring 362

Diagnosing Errors to Find Faults 364

Fixing Faults 364

Problem Reporting 365

How Do We Establish Confidence in the Tested Product? 365
Test Plan and Test Documentation 366

Summary 367

Exercises 368

References 368

CONTENTS

xvil

APPENDIX
APPENDIX
APPENDIX
APPENDIX

o w »

Case Study: CAPERT—A Wholesale Auto Parts Distributor 369
Case Study: IMPERT—A Critical Path Scheduling Program 384

Computer Systems for Software Development

Information System Development Tasks
Glossary 398
Index 410

393

387

Introducing
Software Engineering

l PART

What Is
Software Engineering?

The tield of software engineering is concerned with all of the activities involved in
the solution of problems through the development of computer systems.

Today caretul planning and coordination are necessary to produce software because
the problems they solve and the programs themselves are complex, the develop-
ment must be done by teams, software is expensive, and mistakes are costly and
difficult to correct.

Software engineering is the management of expectations, computer technology,
human skills, time, and money in order to create a software product that meets the
expectations ot the client with a satistactory return to the producer.

Software projects should be planned at the start rather than ad hoc as they proceed.
They require communication between the two cultures of producer and client,
require a commitment of resources before many important questions can be resolved,
and culminate in an entirely new product.

Software engineering continues to evolve, finding better methods for producing
today’s increasingly complex software.

