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Preface

Software Engineering with Systems Analysis and Design develops the natural
integration between software engineering and systems analysis and design. The
field of software engineering has become increasingly complex. A bewildering
variety of methodologies are currently in use and new methodologies are contin-
ually being developed. This book presents the classical approaches to software
engineering—data flow diagrams, structure charts, Warnier-Orr Diagrams—and
explores many of the newer techniques, such as Trees and higher order software.
Furthermore, it presents an integrated approach that serves to illustrate basic
principles while solving many of the problems intrinsic to the classical methods.
It can be used alone to develop systems or in conjunction with readily-available
computer aids.

Software Engineering with Systems Analysis and Design is written with both
the student and the practitioner in mind. The book is appropriate for classes in
software engineering or systems analysis, as well as in the spectrum of computer
science and management information systems classes. The software engineering
practitioner will find the text a valuable tool for improving his or her current
methods.

The impetus for this book comes from two sources, one in industry and one
in academic life. My twenty years of experience in industry (General Electric
and Burroughs Research Laboratories) and my observations of senior projects at
California State University, Sacramento, convinced me that students are fre-
quently ili-prepared for the real-world problem solving they encounter when they
graduate. This realization was the main motivation for my developing the course
in software engineering that is now required of all computer science majors at
CSUS. It has also guided my approach in the text.
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Organization and Features

Software Engineering with Systems Analysis and Design is divided into five parts:

Part 1 introduces the principles used throughout the rest of the book;

Part 2 develops techniques for describing the product and working with its
requirements and design;

Part 3 describes how the project is managed,

Part 4 examines information-systems technologies; and

Part 5 applies the techniques developed in the previous parts to each phase of
the project.

Part 1 should be read first. Parts 2, 3, and 4 may be read in any order. Part 5
builds on the principles developed in Parts 1 through 4 and should be read in
conjunction with the case study in the appendix.

The integrated approach presented here is supported by such unifying themes
as the tree, which is used as a hierarchical representation of systems or programs;
matching requirements and means; and the role of expectations in project man-
agement. The reader is introduced to needs and feasibility analyses, Two-Entity
Data Flow Diagrams, Trees, and structured design, and then learns how these
techniques can be extended and integrated throughout the entire software devel-
opment life cycle. This approach shows the reader how to simplify transitions
between phases in the life cycle, improve traceability, provide progress reports
to managers, and estimate, plan, schedule, and control projects. Principles and
general methods are presented first, followed by step-by-step applications of these
methods through the phases of the project. The need for up-front planning is
emphasized and methods of representation and progress measurement are pro-
vided. Also included in this book are chapters on problem definition, cost, and
feasibility, topics that are often omitted or underplayed in other software engi-
neering books. A case study at the end of the book provides a practical model
for the concepts presented in the text.

To the Software Engineering Practitioner

There are currently many software engineering tools in use (data flow diagrams,
structure charts, Warnier-Orr Diagrams, entity relation diagrams, state transition
diagrams), each with its own application to a specific aspect of the system. If we
use structure charts, we do structured design but, if we use Warnier-Orr Dia-
grams, we probably don’t. We may use data flow diagrams and structured English
for requirements, structure charts for design, and pseudocode and a high-level
programming language for implementation. With all these methods in use on the
same project and different methods in use during each phase, it is very difficult
to provide consistency of representation, to ensure that ideas and work are not
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lost when converting from one method to another, and to track the progress of
the entire project throughout its life cycle. It is also difficult to ensure that the
requirements developed at the beginning of the project have been preserved in
the end product, harder still to collect data that will aid in estimating future
projects, and very difficult to use computer aids.

This book provides a means of using both the conventional and newer, more
powerful methods of software engineering more effectively. It presents an inte-
grated approach, based on the fundamental concepts of the classical approach,
that can greatly increase productivity. The integrated approach provides the fol-
lowing advantages:

1. a consistent measure of progress throughout the entire cycle, from require-
ments to code generation

2. a means of tracking requirements throughout the cycle, ensuring that no
requirements are lost from one phase to the next

3. a method of representation (tree editors) that does not have to be modified
from one phase to another

4. a means of calculating metrics using computers

5. a method of collecting data automatically as the system develops

6. a method that can be implemented with computer aids.

In short, the integrated approach presented here will help the software engineering
practitioner incorporate the methods he or she already uses with those that are
newly developed and those that undoubtedly will be developed as the field of
software engineering continues to grow.

0t ——————— ..
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What Is
Software Engineering?

The tield of software engineering is concerned with all of the activities involved in
the solution of problems through the development of computer systems.

Today caretul planning and coordination are necessary to produce software because
the problems they solve and the programs themselves are complex, the develop-
ment must be done by teams, software is expensive, and mistakes are costly and
difficult to correct.

Software engineering is the management of expectations, computer technology,
human skills, time, and money in order to create a software product that meets the
expectations ot the client with a satistactory return to the producer.

Software projects should be planned at the start rather than ad hoc as they proceed.
They require communication between the two cultures of producer and client,
require a commitment of resources before many important questions can be resolved,
and culminate in an entirely new product.

Software engineering continues to evolve, finding better methods for producing
today’s increasingly complex software.




