: Refactoring
liiaksi Databases

Evolutionary
Database Design

[3€] Scott W. Ambler Pramod J. Sadalage #

& (R A

R EFACTORING
IDATABASES

B R 4K 200T4E S 1T T ol L4 T K%

BB HL i pL

POSTS & TELECOM PRESS

A

N\,

TP311. 13
Y1l

EHEemgEH (CIP) 5

BARFEEM/ (38 &A% (Ambler, S. W), () BEiAfIX, (Sadalage, P.J.) 2.
—Jbut: ARMBHHARE, 2007.6

CHGRJRRR 558D

ISBN 978-7-115-15570-2

. & . O%... @FF... . BFERS
P RRRCA B 154 CIP BB A% T (2006) 2 147794

iR Bl A B

Original edition, entitled Refactoring Databases: Evolutionary Database Design, 1St Edition,
0321293533 by Scott W. Ambler, Pramod J. Sadalage, published by Pearson Education, Inc,
publishing as Addison Wesley Professional, Copyright © 2006 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
retrieval system, without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and POSTS &
TELECOMMUNICATIONS PRESS Copyright © 2006.

This edition is manufactured in the People’s Republic of China, and is authorlzed for sale only in
People’s Republic of China excluding Hong Kong, Macau and Taiwan.

RTFhEARKMEEAR (FEEPFESFE. BIIEHINTHRNTEASIHE) #HE.

ABHEMH Pearson Education (EEHEHMER) JMABHIRE. TAEEERENE.

ML

¥ V. TP311.13

M PR 5
BUBEEM (FIThD
L [#] Scott W. Ambler Pramod J. Sadalage
THTHmE %
¢ ARCHEHUH B HUBUR AT dentbige oix & 03 14
W4 100061 i &Pl 315@ptpress.com.cn
Fhik http://www.ptpress.com.cn

A6 B8 AL ED Rl A RR 2 51 ED R
B HIE SRR BT R
¢ JTA: 800x1000 1/16

figk: 235
L 470 ToF 2007 426 HE 1 I
Il f: 1 -3 000 2007 412 6 AL 5EEE 1 KA

FERGEEILS EF: 01-2007-0860 5
ISBN 978-7-115-15570-2/TP
EAT: 65.00 G
EERE ML (010)67132705 ENERENL. (010)67129223

AFRE

SIRARAREENRS 52N RINBPITFET S50 E—SBENRES AT
NERFONRT. TP M. T BMEFMEE. A BESRIBET ABIEERASI IS
DARENESPNE LS5

ABBERT WAAEARNTIBYEIER T, WREE. BE. 1SHETFE AL =
BESPER D), " UBEIB R SR SR 80 kB,

XB—ARBTEENSS. 5@, SENE T BIEESESENE TEANS,
ICFEFEROIIAI, BIMLE I MBI PO N RIS S S B2 N
REBHMESEITE, R THIBEESENAATERT, SEES2NEEHRS
MNERIEES . BIBRBASREEMY, WABENNSERSERTER, A5
RS A Oracle £ Java B2IIBVZAISLRI, FOJ TS {EHISEHAR, C#. C++. VB.NET
FHMIBES3 DB2. SQL Server. MySQL. Sybase ZEE ¥R E,

EAARBEERARNSE, EETLUR/DRBIEE TIE, FRIEXMFIRA, @17
REBBIMA A2 F2 LUE R >k SR T SRV BB EE R 4 o

Praise for Refactoring Databases

“This groundbreaking book finally reveals why database schemas need not be
difficult to change, why data need not be difficult to migrate, and why database
professionals need not be overburdened by change requests from customers and
developers. Evolutionary design is at the heart of agility. Ambler and Sadalage
have now shown the world how to evolve agile databases. Bravo!”

—Joshua Kerievsky, founder, Industrial Logic, Inc.; author, Refactoring to
Patterns

“This book not only lays out the fundamentals for evolutionary database devel-
opment, it provides many practical, detailed examples of database refactoring.
It is a must read for database practitioners interested in agile development.”
—Doug Barry, president, Barry & Associates, Inc.; author of Web Services and
Service-Oriented Architectures: The Savvy Manager’s Guide

“Ambler and Sadalage have taken the bold step of tackling an issue that other
writers have found so daunting. Not only have they addressed the theory behind
database refactoring, but they have also explained step-by-step processes for
doing so in a controlled and thoughtful manner. But what really blew me away
were the more than 200 pages of code samples and deep technical details illus-
trating bow to overcome specific database refactoring hurdles. This is not just
another introductory book convincing people that an idea is a good one—tbis is
a tutorial and technical reference book that developers and DBAs alike will
keep near their computers. Kudos to the brave duo for succeeding where others
have failed to even try.”

—Kevin Aguanno, senior project manager, IBM Canada Ltd.

“Anybody working on non-greenfield projects will recognize the value that
Scott and Pramod bring to the software development life cycle with Refactoring
Databases. The realities of dealing with existing databases is one that is tough to
crack. Though much of the challenge can be cultural and progress can be beld in
limbo by strong-armed DBA tactics, this book shows how technically the refac-
toring and evolutionary development of a database can indeed be handled in an
agile manner. I look forward to dropping off a copy on the desk of the next
ornery DBA [run into.”

—Jon Kern

“This book is excellent. It is perfect for the data professional who needs to pro-
duce results in the world of agile development and object technology. A well-
organized book, it shows the what, why, and how of refactoring databases and
associated code. Like the best cookbook, I will use it often when developing and
improving databases.”

—David R. Haertzen, editor, The Data Management Center, First Place
Software, Inc.

“This excellent book brings the agile practice of refactoring into the world of
data. It provides pragmatic guidance on both the methodology to refactoring
databases within your organization and the details of how to implement indi-
vidual refactorings. Refactoring Databases also articulates the importance of
developers and DBAs working side by side. It is a must bave reference for devel-
opers and DBAs alike.”

—Per Kroll, development manager, RUP, IBM; project lead, Eclipse Process
Framework

“Scott and Pramod have done for database refactoring what Martin Fowler did
for code refactoring. They’ve put together a coberent set of procedures you can
use to improve the quality of your database. If you deal with databases, this
book is for you.”

—Ken Pugh, author, Prefactoring

“It’s past time for data people to join the agile ranks, and Ambler and Sadalage
are the right persons to lead them. This book should be read by data modelers
and administrators, as well as software teams. We have lived in different worlds
for too long, and this book will help to remove the barriers dividing us.”
—Gary K. Evans, Agile Process evangelist, Evanetics, Inc.

“Evolutionary design and refactoring are already exciting, and with Refactoring
Databases this gets even better. In this book, the authors share with us the tech-
niques and strategies to refactor at the database level. Using these refactorings,
database schemas can safely be evolved even after a database bas been deployed
into production. With this book, database is within reach of any developer.”
—Sven Gorts

“Database refactoring is an important new topic and this book is a pioneering
contribution to the community.”

—Floyd Marinescu, creator of InfoQ.com and TheServerSide.com; author of
EJB Design Patterns

ii

About the Authors

Scott W. Ambler is a software process improvement (SPI) consultant living just
north of Toronto. He is founder and practice leader of the Agile Modeling (AM)
(www.agilemodeling.com), Agile Data (AD) (www.agiledata.org), Enterprise
Unified Process (EUP) (www.enterpriseunifiedprocess.com), and Agile Unified
Process (AUP) (www.ambysoft.com/unifiedprocess) methodologies. Scott is the
(co-)author of several books, including Agile Modeling (John Wiley & Sons,
2002), Agile Database Techniques (John Wiley & Sons, 2003), The Object
Primer, Third Edition (Cambridge University Press, 2004), The Enterprise Uni-
fied Process (Prentice Hall, 2005), and The Elements of UML 2.0 Style (Cam-
bridge University Press, 2005). Scott is a contributing editor with Software
Development magazine (www.sdmagazine.com) and has spoken and keynoted
at a wide variety of international conferences, including Software Development,
UML World, Object Expo, Java Expo, and Application Development. Scott
graduated from the University of Toronto with a Master of Information Science.
In his spare time Scott studies the Goju Ryu and Kobudo styles of karate.

Pramod J. Sadalage is a consultant for ThoughtWorks, an enterprise application
development and integration company. He first pioneered the practices and
processes of evolutionary database design and database refactoring in 1999
while working on a large J2EE application using the Extreme Programming
(XP) methodology. Since then, Pramod has applied the practices and processes
to many projects. Pramod writes and speaks about database administration on
evolutionary projects, the adoption of evolutionary processes with regard to
databases, and evolutionary practices’ impact upon database administration, in
order to make it easy for everyone to use evolutionary design in regards to data-
bases. When he is not working, you can find him spending time with his wife
and daughter and trying to improve his running,.

Scott:
For Beverley, my lovely new bride.

Pramod:
To the women I love most, Rupali and our daughter, Arula.

Acknowledgments

We want to thank the following people for their input into the development
of this book: Doug Barry, Gary Evans, Martin Fowler, Bernard Goodwin,
Joshua Graham, Sven Gorts, David Hay, David Haertzen, Michelle Housely,
Sriram Narayan, Paul Petralia, Sachin Rekhi, Andy Slocum, Brian Smith,
Michael Thurston, Michael Vizdos, and Greg Warren.

In addition, Pramod wants to thank Irfan Shah, Narayan Raman, Anishek
Agarwal, and my other teammates who constantly challenged my opinions and
taught me a lot about software development. I also want to thank Martin for
getting me to write, talk, and generally be active outside of ThoughtWorks;
Kent Beck for his encouragement; my colleagues at ThoughtWorks who have
helped me in numerous ways and make working fun; my parents Jinappa and
Shobha who put a lot of effort in raising me; and Praveen, my brother, who
since my childhood days has critiqued and improved the way I write.

Forewords

A decade ago refactoring was a word only known to a few people, mostly in the
Smalltalk community. It’s been wonderful to watch more and more people learn
how to use refactoring to modify working code in a disciplined and effective
manner. As a result many people now see code refactoring as an essential part of
software development.

I live in the world of enterprise applications, and a big part of enterprise
application development is working with databases. In my original book on
refactoring, 1 picked out databases as a major problem area in refactoring
because refactoring databases introduces a new set of problems. These problems
are exacerbated by the sad division that’s developed in the enterprise software
world where database professionals and software developers are separated by a
wall of mutual incomprehension and contempt.

One of the things I like about Scott and Pramod is that, in different ways,
they have both worked hard to try and cross this division. Scott's writings on
databases have been a consistent attempt to bridge the gap, and his work on
object-relational mapping has been a great influence on my own writings on
enterprise application architecture. Pramod may be less known, but his impact
has been just as great on me. When he started work on a project with me at
ThoughtWorks we were told that refactoring of databases was impossible.
Pramod rejected that notion, taking some sketchy ideas and turning them into a
disciplined program that kept the database schema in constant, but controlled,
motion. This freed up the application developers to use evolutionary design in
the code, too. Pramod has since taken these techniques to many of our clients,
spreading them around our ThoughtWorks colleagues and, at least for us, for-
ever banishing databases from the list of roadblocks to continual design.

This book assembles the lessons of two people who have lived in the no-mans
land between applications and data, and presents a guide on how to use refac-
toring techniques for databases. If you’re familiar with refactoring, you'll notice
that the major change is that you have to manage continual migration of the
data itself, not just change the program and data structures. This book tells you
how to do that, backed by the project experience (and scars) that these two have
accumulated.

Much though I’'m delighted by the appearance of this book, I also hope it’s
only a first step. After my refactoring book appeared I was delighted to find
sophisticated tools appear that automated many refactoring tasks. I hope the

FOREWORDS

same thing happens with databases, and we begin to see vendors offer tools that
make continual migrations of schema and data easier for everyone. Before that
happens, this book will help you build your own processes and tools to help;
afterward this book will have lasting value as a foundation for using such tools
successfully.

—Martin Fowler, series editor; chief scientist, ThoughtWorks

In the years since I first began my career in software development, many aspects
of the industry and technology have changed dramatically. What hasn’t
changed, however, is the fundamental nature of software development. It has
never been hard to create software—just get a computer and start churning out
code. But it was hard to create good software, and exponentially harder to cre-
ate great software. This situation hasn’t changed today. Today it is easier to cre-
ate larger and more complex software systems by cobbling together parts from
a variety of sources, software development tools have advanced in bounds, and
we know a lot more about what works and doesn’t work for the process of cre-
ating software. Yet most software is still brittle and struggling to achieve accept-
able quality levels. Perhaps this is because we are creating larger and more
complex systems, or perhaps it is because there are fundamental gaps in the
techniques still used. I believe that software development today remains as chal-
lenging as ever because of a combination of these two factors. Fortunately, from
time to time new technologies and techniques appear that can help. Among
these advances, a rare few are have the power to improve greatly our ability to
realize the potential envisioned at the start of most projects. The techniques
involved in refactoring, along with their associate Agile methodologies, were
one of these rare advances. The work contained in this book extends this base in
a very important direction.

Refactoring is a controlled technique for safely improving the design of code
without changing its behavioral semantics. Anyone can take a chance at
improving code, but refactoring brings a discipline of safely making changes
(with tests) and leveraging the knowledge accumulated by the software develop-
ment community (through refactorings). Since Fowler’s seminal book on the
subject, refactoring has been widely applied, and tools assisting with detection
of refactoring candidates and application of refactorings to code have driven
widespread adoption. At the data tier of applications, however, refactoring has
proven much more difficult to apply. Part of this problem is no doubt cultural,
as this book shows, but also there has not been a clear process and set of refac-
torings applicable to the data tier. This is really unfortunate, since poor design
at the data level almost always translates into problems at the higher tiers, typi-
cally causing a chain of bad designs in a futile effort to stabilize the shaky foun-
dation. Further, the inability to evolve the data tier, whether due to denial or

FOREWORDS

fear of change, hampers the ability of all that rests on it to deliver the best soft-
ware possible. These problems are exactly what make this work so important:
we now have a process and catalog for enabling iterative design improvements
on in this vital area.

[am very excited to see the publication of this book, and hope that it drives
the creation of tools to support the techniques it describes. The software indus-
try is currently in an interesting stage, with the rise of open-source software and
the collaborative vehicles it brings. Projects such as the Eclipse Data Tools Plat-
torm are natural collection areas for those interested in bringing database refac-
toring to life in tools. I hope the open-source community will work hard to
realize this vision, because the potential payoff is great. Software development
will move to the next level of maturity when database refactoring is as common
and widely applied as general refactoring itself.

—John Graham, Eclipse Data Tools Platform, Project Management, committee
chair, senior staff engineer, Sybase, Inc.

In many ways the data community has missed the entire agile software develop-
ment revolution. While application developers have embraced refactoring, test-
driven development, and other such techniques that encourage iteration as a
productive and advantageous approach to software development, data profes-
sionals have largely ignored and even insulated themselves from these trends.

This became clear to me early in my career as an application developer at a
large financial services institution. At that time I had a cubsicle situated right
between the development and database teams. What I quickly learned was that
although they were only a few feet apart, the culture, practices, and processes of
each group were significantly different. A customer request to the development
team meant some refactoring, a code check-in, and aggressive acceptance test-
ing. A similar request to the database team meant a formal change request
processed through many levels of approval before even the modification of a
schema could begin. The burden of the process constantly led to frustrations for
both developers and customers but persisted because the database team knew
no other way.

But they must learn another way if their businesses are to thrive in today’s
ever-evolving competitive landscape. The data community must somehow
adopt the agile techniques of their developer counterparts.

Refactoring Databases is an invaluable resource that shows data profession-
als just how they can leap ahead and confidently, safely embrace change. Scott
and Pramod show how the improvement in design that results from small, iter-
ative refactorings allow the agile DBA to avoid the mistake of big upfront
design and evolve the schema along with the application as they gradually gain
a better understanding of customer requirements.

FOREWORDS

Make no mistake, refactoring databases is hard. Even a simple change like
renaming a column cascades throughout a schema, to its objects, persistence
frameworks, and application tier, making it seem to the DBA like a very inacces-
sible technique.

Refactoring Databases outlines a set of prescriptive practices that show the
professional DBA exactly how to bring this agile method into the design and
development of databases. Scott’s and Pramod’s attention to the minute details
of what it takes to actually implement every database refactoring technique
proves that it can be done and paves the way for its widespread adoption.

Thus, I propose a call to action for all data professionals. Read on, embrace
change, and spread the word. Database refactoring is key to improving the data
community’s agility.

—Sachin Rekhi, program manager, Microsoft Corporation

In the world of system development, there are two distinct cultures: the world
dominated by object-oriented (OO) developers who live and breathe Java and
agile software development, and the relational database world populated by
people who appreciate careful engineering and solid relational database design.
These two groups speak different languages, attend different conferences, and
rarely seem to be on speaking terms with each other. This schism is reflected
within IT departments in many organizations. OO developers complain that
DBAs are stodgy conservatives, unable to keep up with the rapid pace of
change. Database professionals bemoan the idiocy of Java developers who do
not have a clue what to do with a database.

Scott Ambler and Pramod Sadalage belong to that rare group of people who
straddle both worlds. Refactoring Databases: Evolutionary Database Design is
about database design written from the perspective of an OO architect. As a
result, the book provides value to both OO developers and relational database
professionals. It will help OO developers to apply agile code refactoring tech-
niques to the database arena as well as give relational database professionals
insight into how OO architects think.

This book includes numerous tips and techniques for improving the quality
of database design. It explicitly focuses on how to handle real-world situations
where the database already exists but is poorly designed, or when the initial
database design failed to produce a good model.

The book succeeds on a number of different levels. First, it can be used as a
tactical guide for developers in the trenches. It is also a thought-provoking trea-
tise about how to merge OO and relational thinking. I wish more system archi-
tects echoed the sentiments of Ambler and Sadalage in recognizing that a
database is more than just a place to put persistent copies of classes.

—Dr. Paul Dorsey, president, Dulcian, Inc.; president, New York Oracle Users
Group; chairperson, J2EE SIG

W FBEE KA TF R I7 v, WA BRWFE (XP). Scrum. Rational 45— it #2 (RUP). k% —id 2 (AUP)
FFPESRBN TR (FDD) %, fEid % JUER DL UREARRBE Y 55T IT WHR. HZEY, i =X
T3S — P R AR R B A SR A 7 vk, TR 3 2 R U — b LA A0 A 6 Ve A R)
e Hbh, EM. GXHE. AR R (TDD) MEHFEAIRFFR (AMDD) EHEFEHE AR, TIE
BT IT AL XEHERMBE RN RIS T BN, TiREERHHELE SRR EERN,
IEE LB . WS, FEAMEHER e R R AR RE.

TETTRIHEZEAE (Refactoring) =, Martin Fowler 1 B AR X S ACLHEAT MR, 762 HiE
X0 P BB, BE 2, WLER MR RR I BT TR R R R . B, 1
TRBEX W RRETREANARFRAG, BabaTESEERRRTER. R,
WRE, PABEERTHEOBAY, BOREEMEEALNRRE, Fibhs & iR e SR B
HEBRTEH ZEAEZ 4b.

H 1999 4 (Refactoring) HARLIKR, RITELRI T EABBEEMRIHE. Y, RIFALL
BEMTER, RRE “REFR (www.sdexpo.com)” F& IR BRFIF EA LK AHTE. 5
RBEATFAIAR RS W BRI, BREARMNOASHHEARREMES . B EAK.
TRBMNEHNERSSH, SRR ERATE T B MR $HE M WE BRI A

A 2% 5] T4 Java. Hibernate 1 Oracle AR E R . IR ERN EN R T e s
XY ERAR S FATBRORTD, TINTF—EEREBYELES, RIVETE Java N2 ARG
FTRFHBR. EAEMBBELRTRF—, FUMRSRE R e EEOEMES, RIH
Xt & ST T RIHATITIE

EREGITH, RITHEZELINE, RMEA Oracle #64# (41 SET. UNUSED. RENAME TO
FiS) BATEMMAEHREK: RIVRBALHIEFE T Oracle i) COMMENT ON 4644, FoA S 42
PE 7= i BT FoAh Bl 18 10 0008 P T A DR T i B0 P 2 R IS (]) P A e M A B T . T
LUE SR A TR IS A RIMBIX— . 54h, ROVER BRI Java A8, AT SN CHL CH++,
F & Visual Basic {5,

B EEH (XK

{EFMNL N ME A F A28V EE

WEREBEFRE I MIEMENES . TREEME EHMNIA R EREEN, HEEE
BAME A RBATEHIEEER, DMERBURRITRE AN EAHER. BETEMERE, B
REMZ R, XRAUAMEEASEBN. SENTRAEBRLRNI —BAFTEL, MABFRE “F
R, Ebr LR IEEL. TR REARNLERE N R R TESTN, KEFARM A CK TR
BREE RN EN. KEHEFRCELEXNT TDD. ENM. AMDD ZH R, BREH THNFERT
BEXPHSEATEAN . RAMGDX A TR, B E ChFEIHINI W ET ZREATT A,

KAFER A EFREEENREWT .

1. BRBE. HE, BELRSENIIE, T RAE R RS B % 55 1 B BT A R T 38 e i
. EAMKER. M., @i LA, HTAESENEREKAE - ERAHENTERM T2
Rift. WRIREBDTEMX— T, JREA D ERHERRER T 1E.

2. BRARMNEI . EAEE1ED, TERESED, PRESHCM LB TE, E8%
R, XHMREESHUFRITHRMAXEMNNETEER XS NE TEER L EEE
HIZHT T o

3. MARERGIAREIT. EHFIERIrE, EErE R A RAEET e, B R EEERR
WSS, MEBREBRFALZT. WRES FHIOERRER - NEBIRMSTINREET A, e
KK FEEI B R .

4. BAREMBEEQIHARVESHRE. XRBEEEEENNIIBAE: SRETNERE
R RRRE.

5. SHAEETRSE. FREZUSEFXLEN, nBREER A REEIRTREFB b KE
HE, RELEREUENE R T 1E.

6. BORATIER. UNEFRTIE, HREMARZMBMTLL, EEBERBIE.

FE X BOR BT R B — g5 #:

1. FENXUHER. TF2EBERIARBVOEEESH TER TR R, SHREEERREY 6
BEMEARFH NS HRYHEIIESER I SRR RSB T, ATEE. RS EREN %Y
PRELE, REEH, CDBIHERR, SREGSEERITARITATAE. EBENE, JESEAR
> “BARGIM” RTE 20 D 70 FEAUR 80 EFLHPTRRAY, WX T 90 FERMI B EA, EWthik
HIRMIET R T HARAN S, BREFHET, MIEHEARHEE . EEaNEHh TRE),
TSR ARKU, L (BIMERRESE) H T, AEE4T, 7 HATE.

2. B, FIXEFHHATEERNE, TRES B ER ST WL EET®], WEERE
BT H.

3. TRIXPFBEFHERE. 1999 4, (Refactoring) HIRZFR, WEAMTRAIX —HA, (ULSES
G, B—FERIT RIS (IDE) MAE T AENRIEMNSE. A RSN, WaIEAEEEER

B

THERE, HEER TR EMTENRMEEHURA ST FrEK2, Eclipse ¥ TRIH (DTP)
EFEHIR B TR S BT A Eclipse W IF A SIREEM TR, HTUL TR/ BRE RUR A 18]) A

:13

BEEFAET

BRFHBFELTNTREERAHA R, BHEBEEHIR FERERAGEFZEO—RER, —4
TRWERA “BEBEE” (www.agilealliance.org) $HEPUAMMESRAE, BNATAII A REETFE. Xeem
ERRE M, A RERE, ANESHEATE—FENORN, MiERtim. 52, Ni%E
REUKIRE, EFEEERYULLHRS. B, SENTARE, MACEEEE., SEMI AR
W

L MR EREERNTIR. RELXRNEEENEEREARA DM/, MERMX—&E
W, TRFMSREMERLT, hEEHL.

2. AWHREMIEERB AN, REFRBBANEFREE BN ERETEW®RME. X
FOERAHHALN: XN RERERY, TUMR-AREURIIE. BEERLEHTE.

3. BRPGEMIERRN. REZE A S REMIIEER 4. ARG EEE — b
MEESRRERRIRRAENAE S, R RIFHRBIER, MG X SSEs. SEPrEraRABEREE,
EEREERBERNBE. BRI IT WAL 5% EHEE, SHRBEPNEE, Haex—if
B RE P HITHE.

4. MR LR MR . BEETHAERE LHE, BRAMMTAFENERGS LT, W
FHEHE, EMPEARBERE. BUERETFROII, U RE LT R, S0 28 LURF
SEHE, X TR SRR 00 2 R R R AR A PRI

FHEE

ABRAERIIRE AEAERSE T3 BRTHRABRE REWKS LM, §THSUH
BT HIEABIEEIT R — BREREEN — WERESMEAR, 58 DRI X 54,

* BOBERE VR THIERF ROBEAR SRR, X E8A TEM . JUREEH. SR
ES8A. @it AMDD 5 THNE R AR . BURFE R ACE R, DR TT R B YR
B,

o BRIV T MR B A R (R DR TE S B R R T S R X — 56 e v A SR iR
T TR BRI P IR K A 5T 2 1 2 S0 P AR P BRI o B 0 PE B A 451

VU ROIBERRNINE, REVELNTE. Wk, BT,
]

BEEEH (FEUR)

« BEERAER T AR PN ERAR TEMBEEETENER. W TRANARFSIEET
B, BTXHREERERKR, FUEMEAMFENTAEREMIEL. MESNARFRE Y, NEXH
SN, OSBRI R AT SRR IR AR, (N AR R T R B AR a6 SLARPLBERT . B B
Tl

« BIERHRMELEFENLSRBER>HPE B BRI B R MBI A —
RHATRNK, WRIEH T X RS NABRFASE P R AT P,

« BRERL T LERRNES REEMEHEEERNFTRAKN L& “4F2KR7 . RITEL/MEERE
BHEW, E-HEEET, iR,

XTFHE

£ “Martin Fowler 4 257 A, §—AKHE LHATHFROBA . R—EERMT N HXE:
Martin HE TR +ATEM, EARFIELHEGHEIEENERE. BESKKERETE. ABHH
BB 2R A I K B 22 KR4 {1 RIS BRI B /R W0 L1 (KSR T « N« B A BRHF . ZEX At =
R, BAFHILPRE, 5 —ERERARFRERARRN . IMIRGRZFUBSHEE, RE
HZ. REEN—NMRERRB T MBI k. FRFEMENABTIX R HTE. X
EEFEARES —BHRSE, (HIEHE 1952 FRMABEESR. 1958 F, BRABFHHE—E,
BRI B B 7 SRR ML, BAEE, UBRERNAN. HAREABFEILEE0E, &
BRI EHIEEE, RARBRREL TETS . W SEITER, BN, URHSE
ERH, T 1985 FRAUEE. HEMNTNELATRNKGTFR LHRAHLHERTRE. £5XH
XHRR A B AR B R AR R RS A R KA — SSFR_EAbRk tH AR 70 B B R 4 2 B AR L 35
FERTLMAZR « M2IFER . HRMEHIEXGREER A, FBE Nikon D70S H#l.

