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Praise for Refactoring Databases

“This groundbreaking book finally reveals why database schemas need not be
difficult to change, why data need not be difficult to migrate, and why database
professionals need not be overburdened by change requests from customers and
developers. Evolutionary design is at the heart of agility. Ambler and Sadalage
have now shown the world how to evolve agile databases. Bravo!”

—Joshua Kerievsky, founder, Industrial Logic, Inc.; author, Refactoring to
Patterns

“This book not only lays out the fundamentals for evolutionary database devel-
opment, it provides many practical, detailed examples of database refactoring.
It is a must read for database practitioners interested in agile development.”
—Doug Barry, president, Barry & Associates, Inc.; author of Web Services and
Service-Oriented Architectures: The Savvy Manager’s Guide

“Ambler and Sadalage have taken the bold step of tackling an issue that other
writers have found so daunting. Not only have they addressed the theory behind
database refactoring, but they have also explained step-by-step processes for
doing so in a controlled and thoughtful manner. But what really blew me away
were the more than 200 pages of code samples and deep technical details illus-
trating bow to overcome specific database refactoring hurdles. This is not just
another introductory book convincing people that an idea is a good one—tbis is
a tutorial and technical reference book that developers and DBAs alike will
keep near their computers. Kudos to the brave duo for succeeding where others
have failed to even try.”

—Kevin Aguanno, senior project manager, IBM Canada Ltd.

“Anybody working on non-greenfield projects will recognize the value that
Scott and Pramod bring to the software development life cycle with Refactoring
Databases. The realities of dealing with existing databases is one that is tough to
crack. Though much of the challenge can be cultural and progress can be beld in
limbo by strong-armed DBA tactics, this book shows how technically the refac-
toring and evolutionary development of a database can indeed be handled in an
agile manner. I look forward to dropping off a copy on the desk of the next
ornery DBA [ run into.”

—Jon Kern



“This book is excellent. It is perfect for the data professional who needs to pro-
duce results in the world of agile development and object technology. A well-
organized book, it shows the what, why, and how of refactoring databases and
associated code. Like the best cookbook, I will use it often when developing and
improving databases.”

—David R. Haertzen, editor, The Data Management Center, First Place
Software, Inc.

“This excellent book brings the agile practice of refactoring into the world of
data. It provides pragmatic guidance on both the methodology to refactoring
databases within your organization and the details of how to implement indi-
vidual refactorings. Refactoring Databases also articulates the importance of
developers and DBAs working side by side. It is a must bave reference for devel-
opers and DBAs alike.”

—Per Kroll, development manager, RUP, IBM; project lead, Eclipse Process
Framework

“Scott and Pramod have done for database refactoring what Martin Fowler did
for code refactoring. They’ve put together a coberent set of procedures you can
use to improve the quality of your database. If you deal with databases, this
book is for you.”

—Ken Pugh, author, Prefactoring

“It’s past time for data people to join the agile ranks, and Ambler and Sadalage
are the right persons to lead them. This book should be read by data modelers
and administrators, as well as software teams. We have lived in different worlds
for too long, and this book will help to remove the barriers dividing us.”
—Gary K. Evans, Agile Process evangelist, Evanetics, Inc.

“Evolutionary design and refactoring are already exciting, and with Refactoring
Databases this gets even better. In this book, the authors share with us the tech-
niques and strategies to refactor at the database level. Using these refactorings,
database schemas can safely be evolved even after a database bas been deployed
into production. With this book, database is within reach of any developer.”
—Sven Gorts

“Database refactoring is an important new topic and this book is a pioneering
contribution to the community.”

—Floyd Marinescu, creator of InfoQ.com and TheServerSide.com; author of
EJB Design Patterns
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Forewords

A decade ago refactoring was a word only known to a few people, mostly in the
Smalltalk community. It’s been wonderful to watch more and more people learn
how to use refactoring to modify working code in a disciplined and effective
manner. As a result many people now see code refactoring as an essential part of
software development.

I live in the world of enterprise applications, and a big part of enterprise
application development is working with databases. In my original book on
refactoring, 1 picked out databases as a major problem area in refactoring
because refactoring databases introduces a new set of problems. These problems
are exacerbated by the sad division that’s developed in the enterprise software
world where database professionals and software developers are separated by a
wall of mutual incomprehension and contempt.

One of the things I like about Scott and Pramod is that, in different ways,
they have both worked hard to try and cross this division. Scott's writings on
databases have been a consistent attempt to bridge the gap, and his work on
object-relational mapping has been a great influence on my own writings on
enterprise application architecture. Pramod may be less known, but his impact
has been just as great on me. When he started work on a project with me at
ThoughtWorks we were told that refactoring of databases was impossible.
Pramod rejected that notion, taking some sketchy ideas and turning them into a
disciplined program that kept the database schema in constant, but controlled,
motion. This freed up the application developers to use evolutionary design in
the code, too. Pramod has since taken these techniques to many of our clients,
spreading them around our ThoughtWorks colleagues and, at least for us, for-
ever banishing databases from the list of roadblocks to continual design.

This book assembles the lessons of two people who have lived in the no-mans
land between applications and data, and presents a guide on how to use refac-
toring techniques for databases. If you’re familiar with refactoring, you'll notice
that the major change is that you have to manage continual migration of the
data itself, not just change the program and data structures. This book tells you
how to do that, backed by the project experience (and scars) that these two have
accumulated.

Much though I’'m delighted by the appearance of this book, I also hope it’s
only a first step. After my refactoring book appeared I was delighted to find
sophisticated tools appear that automated many refactoring tasks. I hope the



FOREWORDS

same thing happens with databases, and we begin to see vendors offer tools that
make continual migrations of schema and data easier for everyone. Before that
happens, this book will help you build your own processes and tools to help;
afterward this book will have lasting value as a foundation for using such tools
successfully.

—Martin Fowler, series editor; chief scientist, ThoughtWorks

In the years since I first began my career in software development, many aspects
of the industry and technology have changed dramatically. What hasn’t
changed, however, is the fundamental nature of software development. It has
never been hard to create software—just get a computer and start churning out
code. But it was hard to create good software, and exponentially harder to cre-
ate great software. This situation hasn’t changed today. Today it is easier to cre-
ate larger and more complex software systems by cobbling together parts from
a variety of sources, software development tools have advanced in bounds, and
we know a lot more about what works and doesn’t work for the process of cre-
ating software. Yet most software is still brittle and struggling to achieve accept-
able quality levels. Perhaps this is because we are creating larger and more
complex systems, or perhaps it is because there are fundamental gaps in the
techniques still used. I believe that software development today remains as chal-
lenging as ever because of a combination of these two factors. Fortunately, from
time to time new technologies and techniques appear that can help. Among
these advances, a rare few are have the power to improve greatly our ability to
realize the potential envisioned at the start of most projects. The techniques
involved in refactoring, along with their associate Agile methodologies, were
one of these rare advances. The work contained in this book extends this base in
a very important direction.

Refactoring is a controlled technique for safely improving the design of code
without changing its behavioral semantics. Anyone can take a chance at
improving code, but refactoring brings a discipline of safely making changes
(with tests) and leveraging the knowledge accumulated by the software develop-
ment community (through refactorings). Since Fowler’s seminal book on the
subject, refactoring has been widely applied, and tools assisting with detection
of refactoring candidates and application of refactorings to code have driven
widespread adoption. At the data tier of applications, however, refactoring has
proven much more difficult to apply. Part of this problem is no doubt cultural,
as this book shows, but also there has not been a clear process and set of refac-
torings applicable to the data tier. This is really unfortunate, since poor design
at the data level almost always translates into problems at the higher tiers, typi-
cally causing a chain of bad designs in a futile effort to stabilize the shaky foun-
dation. Further, the inability to evolve the data tier, whether due to denial or
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fear of change, hampers the ability of all that rests on it to deliver the best soft-
ware possible. These problems are exactly what make this work so important:
we now have a process and catalog for enabling iterative design improvements
on in this vital area.

[ am very excited to see the publication of this book, and hope that it drives
the creation of tools to support the techniques it describes. The software indus-
try is currently in an interesting stage, with the rise of open-source software and
the collaborative vehicles it brings. Projects such as the Eclipse Data Tools Plat-
torm are natural collection areas for those interested in bringing database refac-
toring to life in tools. I hope the open-source community will work hard to
realize this vision, because the potential payoff is great. Software development
will move to the next level of maturity when database refactoring is as common
and widely applied as general refactoring itself.

—John Graham, Eclipse Data Tools Platform, Project Management, committee
chair, senior staff engineer, Sybase, Inc.

In many ways the data community has missed the entire agile software develop-
ment revolution. While application developers have embraced refactoring, test-
driven development, and other such techniques that encourage iteration as a
productive and advantageous approach to software development, data profes-
sionals have largely ignored and even insulated themselves from these trends.

This became clear to me early in my career as an application developer at a
large financial services institution. At that time I had a cubsicle situated right
between the development and database teams. What I quickly learned was that
although they were only a few feet apart, the culture, practices, and processes of
each group were significantly different. A customer request to the development
team meant some refactoring, a code check-in, and aggressive acceptance test-
ing. A similar request to the database team meant a formal change request
processed through many levels of approval before even the modification of a
schema could begin. The burden of the process constantly led to frustrations for
both developers and customers but persisted because the database team knew
no other way.

But they must learn another way if their businesses are to thrive in today’s
ever-evolving competitive landscape. The data community must somehow
adopt the agile techniques of their developer counterparts.

Refactoring Databases is an invaluable resource that shows data profession-
als just how they can leap ahead and confidently, safely embrace change. Scott
and Pramod show how the improvement in design that results from small, iter-
ative refactorings allow the agile DBA to avoid the mistake of big upfront
design and evolve the schema along with the application as they gradually gain
a better understanding of customer requirements.
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Make no mistake, refactoring databases is hard. Even a simple change like
renaming a column cascades throughout a schema, to its objects, persistence
frameworks, and application tier, making it seem to the DBA like a very inacces-
sible technique.

Refactoring Databases outlines a set of prescriptive practices that show the
professional DBA exactly how to bring this agile method into the design and
development of databases. Scott’s and Pramod’s attention to the minute details
of what it takes to actually implement every database refactoring technique
proves that it can be done and paves the way for its widespread adoption.

Thus, I propose a call to action for all data professionals. Read on, embrace
change, and spread the word. Database refactoring is key to improving the data
community’s agility.

—Sachin Rekhi, program manager, Microsoft Corporation

In the world of system development, there are two distinct cultures: the world
dominated by object-oriented (OO) developers who live and breathe Java and
agile software development, and the relational database world populated by
people who appreciate careful engineering and solid relational database design.
These two groups speak different languages, attend different conferences, and
rarely seem to be on speaking terms with each other. This schism is reflected
within IT departments in many organizations. OO developers complain that
DBAs are stodgy conservatives, unable to keep up with the rapid pace of
change. Database professionals bemoan the idiocy of Java developers who do
not have a clue what to do with a database.

Scott Ambler and Pramod Sadalage belong to that rare group of people who
straddle both worlds. Refactoring Databases: Evolutionary Database Design is
about database design written from the perspective of an OO architect. As a
result, the book provides value to both OO developers and relational database
professionals. It will help OO developers to apply agile code refactoring tech-
niques to the database arena as well as give relational database professionals
insight into how OO architects think.

This book includes numerous tips and techniques for improving the quality
of database design. It explicitly focuses on how to handle real-world situations
where the database already exists but is poorly designed, or when the initial
database design failed to produce a good model.

The book succeeds on a number of different levels. First, it can be used as a
tactical guide for developers in the trenches. It is also a thought-provoking trea-
tise about how to merge OO and relational thinking. I wish more system archi-
tects echoed the sentiments of Ambler and Sadalage in recognizing that a
database is more than just a place to put persistent copies of classes.

—Dr. Paul Dorsey, president, Dulcian, Inc.; president, New York Oracle Users
Group; chairperson, J2EE SIG
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