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Foreword

The present book gives an exposition of the classical basic algebraic
and analytic number theory and supersedes my Algebraic Numbers,
including much more material, e.g. the class field theory on which I make
further comments at the appropriate place later.

For different points of view, the reader is encouraged to read the collec-
tion of papers from the Brighton Symposium (edited by Cassels-Frohlich),
the Artin-Tate notes on class field theory, Weil’s book on Basic Number
Theory, Borevich-Shafarevich’s Number Theory, and also older books like
those of Weber, Hasse, Hecke, and Hilbert’s Zahlbericht. It seems that
over the years, everything that has been done has proved useful, theo-
retically or as examples, for the further development of the theory. 014,
and seemingly isolated special cases have continuously acquired renewed
significance, often after half a century or more.

The point of view taken here is principally global, and we deal with
local fields only incidentally. For a more complete treatment of these,
cf. Serre’s book Corps Locauz. There is much to be said for a direct global
approach to number fields. Stylistically, I have intermingled the ideal
and idelic approaches without prejudice for either. I also include
two proofs of the functional equation for the zeta function, to acquaint
the reader with different techniques (in some sense equivalent, but in
another sense, suggestive of very different moods). Even though a reader
will prefer some techniques over alternative ones, it is important at least
that he should be aware of all the possibilities.

New York SERGE Lanc
June 1970



Preface for the Second Edition

The principal change in this new edition is a complete rewriting of
Chapter XVII on the Explicit Formulas. Otherwise, I have made a
few additions, and a number of corrections. The need for them was
pointed out to me by several people, but I am especially indebted to
Keith Conrad for the list he provided for me as a result of a very careful
reading of the book.

New Haven, 199} SERGE Lanc
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Prerequisites

Chapters I through VII are self-contained, assuming only elementary
algebra, say at the level of Galois theory.

Some of the chapters on analytic number theory assume some analysis.
Chapter X1V assumes Fourier analysis on locally compact groups. Chap-
ters XV through XVII assume only standard analytical facts (we even
prove some of them), except for one allusion to the Plancherel formula in
Chapter XVII.

In the course of the Brauer-Siegel theorem, we use the conductor-
discriminant formula, for which we refer to Artin-Tate where a detailed
proof is given. At that point, the use of this theorem is highly technical,
and is due to the fact that one does not know that the zeros of the zeta
function don’t occur in a small interval to the left of 1. If one knew this,
the proof would become only a page long, and the L-series would not be
needed at all. We give Siegel’s original proof for that in Chapter XIII.

My Algebra gives more than enough background for the present book.
In fact, Algebra already contains a good part of the theory of integral
extensions, and valuation theory, redone here in Chapters I and II.
Furthermore, Algebra also contains whatever will be needed of group
representation theory, used in a couple of isolated instances for applica-
tions of the class field theory, or to the Brauer-Siegel theorem.

The word ring will always mean commutative ring without zero divisors
and with unit element (unless otherwise specified).

If K is a field, then K* denotes its multiplicative group, and K its
algebraic closure. Occasionally, a bar is also used to denote reduction
modulo a prime ideal.

We use the 0 and O notation. If f, g are two functions of a real variable,
and ¢ is always 2 0, we write f = O(g) if there exists a constant ¢ > 0
such that [f(z)] < Cg(z) for all sufficiently large . We write f = o(g) if
lim,_, f(z)/g9(z) = 0. We write f ~ ¢ if lim;_, flx)/¢(z) = 1.
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CHAPTER 1

Algebraic Integers

This chapter describes the basic aspects of the ring of algebraic integers
in a number field (always assumed to be of finite degree over the rational
numbers Q). This includes the general prime ideal structure.

Some proofs are given in a more general context, but only when they
could not be made shorter by specializing the hypothesis to the concrete
situation we have in mind. It is not our intention to write a treatise on
commutative algebra.

§1. Localization

Let A be a ring. By a multiplicative subset of A we mean a subset
containing 1 and such that, whenever two elements z, y lie in the subset,
then so does the product zy. We shall also assume throughout that 0 does
not lie in the subset.

Let K be the quotient field of A, and let S be a multiplicative subset
of A. By S7'A we shall denote the set of quotients z/s mth zin A and
sin S. Itis aring, and A has a canonical inclusion in S™'A4.

If Al is an A-module contained in some field L (containing K), then
S™!M denotes the set of elements v/swithve M and s € S. Then S~
is an S7!4-module in the obvious way. We shall sometimes consider
the case when M is a ring containing A as subring.

Let p be a prime ideal of A (by definition, p # A). Then the comple-
ment of p in A, denoted by A — p, is a multiplicative subset S = S, of 4,
and we shall denote S™'4 by A4,.

A local ring is a ring which has a unique maximal ideal. If o is such a
ring, and m its maximal ideal, then any element z of o not lying in m
must be a unit, because otherwise, the principa! ideal zo would be con-
tained in a maximal ideal unequal to m. Thus m is the set of non-units
of 0.



4 ALGEBRAIC INTEGERS {1, §2]

The ring A, defined above is a local ring. As can be verified at once,
its maximal ideal m, consists of the quotients z/s, with z in p and s in 4
but not in p.

We observe that my M A = p. The inclusion D is clear. Conversely,
if an elementy = z/sliesinm, N A withz €pands € S,thenz = sy &p
and s € p. Hencey € p.

Let 4 be a ring and S a multiplicative subset. Let a’ be an ideal of
S™'A. Then

a’ = 87 a' n A).

The inclusion D is clear. Conversely, let z € a’. Write z = a/s with
somea € A and s € S. Then sz €a’ N A, whence z € S™'(a’ N 4).

Under multiplication by S™!, the multiplicative system of ideals of 4
is mapped homomorphically onto the multiplicative system of ideals of
S~™'A. This is another way of stating what we have just proved. If a
is an ideal of A and S™!a is the unit ideal, then it is clear that a N S is
not empty, or as we shall also say, a meets S.

§2. Integral closure

Let A be a ring and z an element of some field L containing A. We
shall say that z is integral over 4 if either one of the following conditions
is satisfied.

INT 1. There exists a finitely generated non-zero A-module M C L such
that M C M.

INT 2. The element x satisfies an equation
"+ a2t b gy =0

with coefficients a; € A, and an integer n = 1. (Such an equation
will be called an integral equation.)

The two conditions are actually equivalent. Indeed, assume INT 2.
The module A generated by 1, z, ..., z°~" is mapped into itself by the
element . Conversely, assume there exists M = (vy, ..., vn) such that
cM C M, and M # 0. Then

TV = A1V T 0+ Qyals

TV = QuVy + -+« + Qnn¥n

with coefficients a,;in A. Transposing zvy, . . ., zv, to the right-hand side



