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INTRODUCTION

This book attempts to present a unified and coherent theory of the calculus
of probability on algebraic structures. Among such structures we shall
consider some that merit special attention because of the role they play
in the applications of the theory as well as because of their intrinsic in-
terest. These are topological semi-groups and groups, topological vector
spaces and algebras.

The author became interested in the subject through a number of practical
problems, some of which are described in chapter 1. Therefore the emphasis
will be on concrete results that can actually be used and that lead, at least
in principle, to solutions that can be determined exactly or approximately,
analytically or numerically. We do not try to reach results of the most
general character or to develop the theory to its most refined form. Therefore
we have not hesitated to impose conditions like separability, Borel meas-
urability ete. in situations where this may not be necessary but where such
conditions result in simplifications. Some reader may feel inclined to
remove such imperfections, to reach necessary and sufficient conditions and
so on. The author hopes that this will be done in the future.

To avoid obscuring the main ideas of the theory by lengthy computations
and technical arguments such manipulations have sometimes been sketched
only. This has been done especially when references could be cited to the
literature where a complete treatment has been given.

To make the presentation as concrete as possible we will discuss a number
of special cases at the end of every chapter. The author believes that some
of these cases are as important as the theorems that they exemplify. They
may sometimes indicate how to extend the theory.

The reader should observe that all the references as well as supplementary
information are given in the Notes at the end of the book. Chapter 1 contains
an outline of the history of the subject and also some remarks concerning
the practical background to the theory. The arguments in this chapter are
of a heuristic nature and will reappear in a rigorous form in the later chapters.

At a first reading the reader may prefer to skip sections 4.2 (where the
very technical proofs are only sketched), 5.4 and 6.6 (which are of special
nature).



It is difficult to specify the necessary prerequisites for reading the book,
but it seems clear that the standard ““calculus and mathematical maturity”
would scarcely be adequate. Since the book is written for probabilists it
will be assumed that the reader is well acquainted with probability and
measure theory, say corresponding to the content of Loéve: Probability
Theory and Halmos: Measure Theory. Many of the measurability arguments
used are of standard type and will only be hinted at. The reader should also
have some knowledge of basic topological algebra. Neumark: Normierte
Algebren is warmly recommended as a lucid and up to date presentation.
Since this topic may be less well known among probabilists it seemed ap-
propriate to be more complete when discussing related questions and the
reader will find a number of the fundamental definitions and logical rela-
tions in the Notes. We must also ask of the reader that he know the ele-
ments of functional analysis. A suitable book would be Hille-Phillips:
Functional Analysis and Semi-groups, which also contains some highly
relevant information about semi-groups; this is almost indispensable when
studying homogeneous processes.

The object of our study is the probability distribution on a structure in
which at least one binary algebraic operation has been defined in such a
way that it is continuous in a suitable topology. We can then talk of a
stochastic element drawn at random from the structure. Composing two
such independent stochastic elements via a binary operation we are led
to convolutions (this is the key word!) of two probability distributions. To
a considerable extent we shall study how convolutions behave, especially
when we perform many of them. Our approach will be analytical, the
main tool being Fourier analysis. There is no doubt that this is the correct
approach if we want definite results, algorithms etc. There is however
another way, more algebraic or perhaps probabilistic, in manner. We
then consider the set of probability distributions in question as forming
a topological semi-group. Applying semi-group theory we can reach certain
results of considerable interest. Actually this is quite an attractive applica-
tion of the general theory of semi-groups, but it will not be discussed more
than occasionally in the text. ,

I have had a number of valuable discussions with colleagues whom I
would like to thank for their suggestions: R. Fortet. E. Mourier, L.
Schmetterer, Z. Sidak, and A. Spatek. I am very grateful to D. Wehn
for putting a manuscript at my disposal before its publication. Sections
4.2-4.4. lean heavily on Wehn’s results and exposition. M. Rosenblatt and
W. Freibeiger read the entire manuscript and suggested many changes.
R. Loynes and P. Martin-Lof scrutinized the book in detail and I am very



grateful to them for their work. They spotted a number of mistakes or
obscurities and also contributed some essential results to the theory.

I would also like to thank Forsdkringsaktiebolaget Skandia and Statens
Naturvetenskapliga Forskningsrdd (Swedish Natural Science Research
Council) for their financial support.

UrLr GRENANDER
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CHAPTER 1

HISTORICAL BACKGROUND AND
PRACTICAL MOTIVATION OF THE PROBLEM

1.1. Why study probabilities on general structures?

The domain of classical probability theory is the real line R, All the
wellknown results like the central limit theorem, the law of the iterated
logarithm or the law of large numbers concern real valued (or possibly
vector valued in R¥) stochastic variables. The real line is so rich in structure
that it can support the intricate but beautiful logical construction consisting
of the probabilistic concepts and relations.

" In mathematics in general there has been a trend towards generalization,
abstraction, axiomatics. This is evident also in probability theory. Since
Kolmogorov published his epoch-making Grundbegriffe der Wahrscheinlich-
keitsrechnung we can use probabilistic arguments in completely general
spaces without loosing anything in rigor. It is true that in such a generality
we cannot always expect results of real mathematical substance, but the
general framework is indispensable also for such, more concrete, work that
is possible if the probability space is given more structure. The classical
results indicate that such advance should be possible by defining algebraic
relations in the space and studying their probabilistic implications. This
leads us automatically to think of notions like groups, topological vector
spaces and algebras. It is hard to resist posing the problem: does the clas-
sical probability theory have any counterpart in these more general algebraic
structures? In the following chapters we shall see that sometimes this
extension is made by an immediate and trivial generalization, sometimes
a stronger effort is required leading to more profound discoveries, and
sometimes we meet challenging problems to which the answers are known
only partially if at all.

The fact that probability theory has grown so fast in recent years is due
no doubt partly to its intrinsic value and its direct appeal to the mathe-
matician but at least as much to its usefulness, exploited or potential. And
8o it is also with the present subject. Its motivation does not consist only of



14 Historical background

a wish to extend the theory to its natural boundaries. There are also a
number of seemingly unrelated problems from physics, commurication
engineering, statistics and so on, that lead us to consider probabilistic rela-
tions in algebraic structures not equivalent to the real line (or the R*.
spaces). When more of these problems and results become widely known,
we can expect an increased research activity and more rapid advance on
both the practical and theoretical side of this subject.

We shall not jump directly into medias res. Instead let vs start by recal-
ling some fundamental facts and techniques from the classical theory (in
1.2.), then go on to review some problems posed by applications (in 1.3.),
and finally (in 1.4.) sketch the outline of the historical development of the
theory as it exists at present.

1.2. Classical methods and results

1.2.1. Granting the reader’s permission we will take as our point of departure
a brief sketch of some facts from elementary probability theory.

On the real line R! there are a number of basic probabilistic definitions
that we will assume known as well as the corresponding fundamental rela-

tions,

probability measure

Borel measure

stochastic variable

independence

various modes of convergence of stochastic variables

(weak) convergence of probability distributions.

From the present point of view we are most interested in such relations
that make use of the additive properties of R'. Let P,, P, be two probability
measures, say defined through their distribution functions

F(y)=Pz|z<y} =12

If to each P; there corresponds a stochastic variable x;; i=1,2; then the
sum z =2z, +, has a probability distribution P given by a distribution func-
tion F(x). If «; and z, are independent F is given as the convolution of
F,and F,

Fo)- [~ Re-yha,
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or shorter F'=F,%F,—We also have the welltnown modifications of
this formula if the distributions are absolutely continuous with respect to
Lebesgue measure or with respect to counting measure on the set of integers;
say the densities are

F(d F,(d
()= m—i d:; and f,(z)= m((d;‘)),
¢hen Ha= f fo(z— 9) o (yhm(dy).

Note that m is in both of these cases a translation invariant measure.—
The convolution operation is commutative, F',% F,= F,* F,, and associative
(Fy* Fy)% Fy=F,%(Fy%Fy). By iteration we can define F,;* F,% ... % F,(z).
The study of such convolutions, especially for large values of n, is one of
the main tasks of probability theory.

There are some elementary relations. If the mean values exist

-]
m, =f 2F(dx)=Ex,, 1=1,2,...n,

then the mean value operation is additive
m=Ex=m,+my+ ... + m,.
If second moments exist then the variances
Var (z;) = E (x; — mi)2 =af
satisfy Var (z)=0}+ 0%+ ... + 02,

if the stochastic variables z; are independent. Under this hypothesis the
variance is additive, and since a variance is non-negative the variance does
not decrease when we add an independent stochastic element to a given
one. In this sense (and in many others) convolution flattens out distributions.
It also smoothes distributions, e.g. in the sense that if one of z, has a continu-
ous distribution then the same is true for the sum z=2+2,+ ... +2,.

The most important analytical tool in this context is the Fourier trans-
form or characteristic function

P(z)= @(2) =f e F (dx) = E exp iz, z real.

The importance of the characteristic function originates in its three
properties
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a) the characteristic function determines the probability measure uni-

quely
b) convolution corresponds to ordinary multiplication:

if P = P,%P, then P =P,-P,

¢) weak convergence of a sequence of probability distributions to a limit
distribution corresponds to convergence of the characteristic functions to a
continuous limit function.

The moments of P are defined by

oy, = Ea*

if these integrals exist. Then they can be expressed as derivatives of the

characteristic function
o, = 1/1%p®(0).

Related concepts are the semi-tnvariants (or cumulants)

K (4

=1/i" |- lo z )
Yk / (dzk g (P( ) 220
which are of course linear combinations of moments of the same and lower
order. The cumulants are additive for independent distributions. It is
sometimes said that moments (and cumulants) are clumsy to work with
and less generally defined than the characteristic function. This may be so
in general investigations, but they are very useful in many cases, also when
limit theorems are concerned.

1.2.2. Now let us go ahead to some limit theorems. One of the oldest is the
theorem of Bernoulli going back to antiquity of probability theory: if z is
a binomial variable v = B(n,p) the relative frequency
Y

P =a
converges in probability to the constant p. Or if we write » as a sum of
independent indicator variables » ==, +,+ ... +x,, where z;=1 or 0 with
probabilities p and ¢ =1 —p respectively, then

1
p*=;(x1+:c2+... +x,) >p=Ez.

Now we know of course that the above formula holds much more generally.
This can be phrased in many different ways but the most attractive version



