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FOREWORD

At the time of conceiving our series of volumes on the methods used by
the experimental physicist, a somewhat arbitrary division of physics was
adopted for the purpose of organizing the material. In absence of adverse
criticism I assume that the subject division is acceptable to the users of
these volumes, and it is in this spirit that I present our latest volume on
the electronic methods used by the experimental physicist.

Preparation of this volume was not easy. In a field where the physicist
is subjected to constant change and progress, the volume editor’s task was
the ungrateful one: to separate the ephemeral methods from the ones
having lasting value and to present these in the hope that their judgment
and that of the authors is the correct one. In many conferences we dis-
cussed details and I hope that the result will be satisfactory. I would like
to use this opportunity to thank again Professors Bleuler and Haxby, as
well as all the authors who were willing to spare their time for preparing
this volume.

This may be the right time to announce two important changes in the
organization of this series. One of these concerns Volume 4, Atomic and
Electron Physics. The original intention of Professors Hughes and Schultz,
editors of Volume 4, was to present it in two parts, Volumes 4A and 4B.
What was to be Volume 4A is nearing completion and we may call it Vol-
ume 4. The second part, considerably enlarged, may be renumbered and
Professors B. Bederson and W. L. Fite have taken over its editorship.
They may co-opt a third volume editor.

The other important change is the organization of a problem volume,
mostly oriented toward the graduate student, and already briefly men-
tioned in the Foreword to Volume 5A. Contrary to the opinion of some of
my theoretical friends, there exist problems in experimental physics, and
Professors W. Hornyak and E. A. Stern have taken over the task of organ-
izing it.

It remains a pleasant task to express, to all those who contributed to
the completion of this volume, my warmest thanks.

L. MarTON
Washington, D. C.
November, 1963
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1. EVALUATION OF MEASUREMENT*

1.1. General Rules

In a concise expression of the results of the measurement of a physical
quantity, three pieces of information should be given: a number, a numer-
ical statement of reliability, and an appropriate set of units. The number
is generally an estimate expressed in a finite set of digits (the exceptions
are numbers which are exact by arbitrary definition, or mathematical
constants such as the base of natural logarithms) reflecting the limited
accuracy of physical measurement. The statement of reliability is usually
written as plus or minus one, or at most two digits in units of the last digit
of the number, together with a sufficient explanation to allow interpreta-
tion. In particular, one should state how many measurements were em-
ployed in the determination of the number and of its reliability. As will
be seen below, this is of great value in the critical comparison of the results
of different experiments, and in their combination with results of previous
work. The number of digits that can be read is indicated by the smallest
scale division, the least count of an instrument. Usually, one additional
digit can be estimated between scale divisions. No more—and no less—
digits should be recorded than can be read reproducibly.

To remove ambiguities, a standard form may be used for the recording
of data: the decimal point is put just after the first nonzero digit, and the
number is multiplied by the appropriate power of ten. Every digit is then
understood to be significant. The statement of reliability, or the state-
ment of the magnitude of error, is automatically indicated by the number
of significant digits. The final result will generally have one more signifi-
cant digit than the individual readings. This procedure implies that one
should not round off readings. Any round-off increases the error. In the
course of computation, round-off may be inevitable. A brief discussion of
errors so introduced, with further references, is given in Chapter 1.7.

For the estimation of the best value of the desired quantity and of the
significance of the result statistical techniques are used. The terms “best”’
and “significant” should be understood in a technical sense: e.g., “best”
and “significant”” according to some statistical criterion. The criteria
applied depend on assumptions which may or may not be true: attention
should be paid to their validity. In the following, only a preseription of the
techniques can be given. For this reason, a word of warning is in order:
these techniques, properly used, can improve the understanding of the

* Part 1 is by Sidney Reed.



2 1. EVALUATION OF MEASUREMENT

results and the judgment of their worth—but they are not a substitute for
thought.? It should be emphasized that work in certain fields, e.g., cosmic
ray or high energy physies, requires more complete attention to statistical
techniques in the planning and interpretation of experiments than can be
discussed here.??

1.2. Errors

1.2.1. Systematic Errors, Accuracy

Statements about reliability of a measurement require assessment of
the accuracy and of the precision of the work. Lack of accuracy is con-
sidered to be due mainly to what long usage has termed systematic errors.

In general, systematic errors are definite functions of experimental
method, instruments, or environmental conditions. If detected they can
usually be corrected for. Sometimes a single correction will be adequate
for the entire work and can be applied at the end. Constant, or slowly
varying systematic errors are hard to detect. The crucial test is the com-
parison of measurements of the same quantity obtained from different
experiments, using different principles.

1.2.2. Accidental Errors, Precision

Precision implies close reproducibility of the results of successive in-
dividual measurements. It is assumed that, in general, there is a variation
from measurement to measurement. This scatter of data is usually con-
sidered due to accidental errors; it is imagined that the experiment is
aimed at a constant quantity, superimposed on which there is a random
sum of small effects independent of each other and of the quantity itself
which are responsible for the variation of the results. Absence of variation
is not necessarily an indication of precision; it may be due simply to an
excessively large least count of the instrument used.

! For further refercnces, see Ii. B. Wilson, Jr., “An Introduction to Scientific
Research.”” McGraw-Hill, New York, 1952; H. Cramer, “Elements of the Theory of
Probability and Its Applications.”” Wiley, New York, 1955; J. Cameron, in “Funda-
mental Formulas of Physies’’ (D. Menzel, ed.), Chapter 2. Prentice-Hall, New York,
1955; L. Parratt, Probability and Experimental Errors in Science, Wiley, N.Y., 1961.

Z See, for example, L. Jinossy, ‘‘Cosmic Rays.” Oxford Univ. Press, London and
New York, 1953.

® M. Annis, W. Cheston, and H. Primakoff, Revs. Modern Phys. 25, 818 (1953);
J. Orear, Univ. of California Radiation Lah. Rept. UCRL-8417 (1958).



1.3. Statistical Methods

To analyze accidental errors, the actual data are imagined to be a
random selection, one for each measurement, of values from a large refer-
ence distribution which could be generated by infinite repetition of the
experiment. In statistical terms, this is a finite sample from a ‘‘parent
distribution” (p.d.). For reasons of mathematical convenience, it is usual
to assume that the p.d. can be approximated satisfactorily by an analytic
function (p.d.f.) having two or three parameters, A finite data sample
permits at most the assignment of odds to the values of the p.d.f,
parameters which represent the best value and the significance of the
measurement.

In most cases, a reasonable, explicit assumption of a definite form of the
p.d.f. is desirable. Which form should be taken depends on a preliminary
assessment of the probabilistic features of the experiment. If the errors are
accidental in the sense described in Chapter 1.2 above, a normal (see
Section 1.3.1) distribution function (n.d.f.) is appropriate. If the experi-
ment is directly concerned with probabilistic phenomena, e.g., counting
experiments in nuclear physics, the Poisson or some other discrete proba-
bility distribution function may be chosen.?:2:3

For the problem of estimation of the best value alone one does not need
to assume any particular p.d.f.; a systematic estimation using least
squares can be made.* A sharp quantitative statement of the statistical
significance of a difference between two “best” estimates of the same
quantity cannot be made, however, without assuming a definite form for
the p.d.f.

1.3.1. Mean Value and Variance

The fraction of readings dN(z)/N drawn from the p.d.f. f(z) lying in
the range between z and z + dz is

AN (z)/N = f(z) da. (1.3.1)

The function f(z) is normalized: [f(z) dz = 1. The average of any func-
tion g(z), denoted by <g(z)>, is defined by <g(z)> = Jo(x)f(z) de.
The range of integration may, for mathematical convenience, extend in
both directions to infinity. Of special importance are the average of x
called the mean

<x> = [xf(x) dx (1.3.2)

4 B. R. Cohen, Revs. Modern Phys. 25, 709 (1953).
3



4 1. EVALUATION OF MEASUREMENT
and the average of (x — <x>)? called the dispersion or variance of
iz) = [(x — <2>)¥(x) d. (1.3.3)

The square root of the variance, ¢(z) is called standard deviation or some-
times standard error. It 1s a measure of the spread of the data and thus
of the precision. An important example of a p.d.f., often assumed to apply
to accidental errors, is the Gaussian or normal distribution (n.d.f.):

fil@) = [V 21 (@) lexp[— (x — <&>)*/20%z)] (1.3.4)

characterized by two parameters, the mean <x> and the variance ¢%(x).
N measurements z; allow the formation of the sample mean

N
F=N" Y g (1.3.5)
2
and the sample variance
N
s2(x) = (N — 1) z (1 — T)°. (1.3.6)
i=1

The mean has the property of being the value of a parameter a which
minimizes 2y, (z; — a)% On the grounds of consistency, one expects that
in some sense & converges to <z> and s to ¢ as N — «.* For computa-
tion, it is useful to subtract a constant A of the order of size of x;, so that

N
I— A =N (2 — A) (1.3.7)
2
and

N
$@) = =071 [ Y @@= 42— N@ - A2] (38
i=1

1.3.2, Statistical Control of Measurements

The use of any p.d. implies that the data may be regarded as drawn
at random from it. There are statistical tests for this,’ but in the case
of data seatter because of accidental errors, a rough “control chart’’ can
assist in detecting systematic departures which are functions of time.
Such a chart may be made by plotting, on the abscissa, the order (in
time) of the reading, and on the ordinate, the reading itself. If there
is previous information on the scatter of the data using the same instru-
ment under similar conditions, so that ¢(z) is known, one can, at least
tentatively, draw lines on the chart at & + 3¢ which should, if the data

* This Is 50 in the technical sense of convergence in probability; see, e.g., Cramer,
reference 1.



1.4. DIRECT MEASUREMENTS D

are in control, bracket practically all the points. It is quite valuable to
have such a chart associated with a precise instrument.

If no previous information is available, one should take a number of
points, draw lines at & & 3s and continue for a few more readings in order
to see whether the additional data fall between these lines. If it appears
that randomness is a fair assumption, one can use the function “chi-
square’”? to test the overall fit of an assumed p.d.f. The chi square, x?,
function can be defined as

. (observed values — values expected from p.d.f.)?
x*=sumof ~V—F—"————— A T ~
p.d.f. variance

and is tabulated as function of the number of degrees of freedom. Here
the number of degrees of freedom equals the number of terms in the sum
minus the quantity: one plus the number of p.d.f. parameters which must
be estimated from the data. In the case of a n.d.f., this is the number
of terms minus three. It is generally necessary to group the observed
data and the corresponding values from the p.d.f. into cells.® F'or mod-
erate numbers of readings, say 20 or so, x* will only show marked dis-
crepancies between the data and the proposed p.d.f. The x? tables give
the probability that tabulated values of x* would be exceeded by those
computed from a random sample from the assumed p.d.f,

1.4. Direct Measurements

It is useful to distinguish between direct measurements, such as can
be made of length, time, or electrical current; and indirect measurements,
in which the quantity in question can be calculated from measurement of
other quantities. In the latter case the law of connection between the
quantities measured and sought may also be in question. In such a case,
one has first to decide whether the proposed relation holds for any values
of the quantities (establishment of the law of connection), and then to
make as good an estimate as possible of the quantity desired.” In the case

5 See any standard statistical tables, e.g., R. A. Fisher and G. Yates, “Statistical
Tables,” Oliver & Boyd, Edinburgh and London, 1953; C. D. Hodgman, ed., “Hand-
book of Chemistry and Physics.”’ Chemical Rubber Publ., Cleveland. (New editions
of the latter volume are published frequently.)

*W. G. Cochran, Ann Math. Statistics 28, 315 (1952); also Parratt, reference 1.

"See Wilson or Parratt, reference 1; Annis ef al., reference 3; and Cohen et al.,
reference 12,
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of direct measurements only the latter problem needs to be solved. This
simple situation will be discussed first.® There are several cases, depend-
ing on what information is available at the start.

1.4.1. Errors of Direct Medasurements

If one has information at the start of the experiment regarding the
variance of readings of the measuring instrument under similar conditions,
the following procedure can be employed: One can draw up a control
chart, using the previous o(z) together with the mean z of a short prelimi-
nary run. If subsequent readings appear to be in statistical control, i.e.,
if the points fall between the lines at £ + 30, one can terminate the process
at a definite number of readings which depends on the precision desired.
One can then say that the most likely value of <z > is given by the mean
%, and that the reliability of this estimate is such that the probability is
one-half that the interval z — 0.67¢//N < z < & + 0.670/+/N con-
tains <z>. The precision increases with N in the sense that the inter-
val having a definite probability of containing <z > narrows proportional
to N='/2* In this case, the interval length is sharply defined (for fixed N
and probability) and if the results are quoted as

A N measurements
the meaning of this statement is as stated above.

Frequently the only information available at the start is that provided
by the data itself. If the data seem to be in statistical control, one can
make statements about the probability of bracketing the p.d.f. mean
which differ from those possible when ¢(2) is known. The levels of proba-
bility now depend on the number of data points in the sample and the
intervals bracketing <z> can now vary in length from sample to sample.
The type of statement that can be made for this case is that the best
estimate of <> is # and that the probability is 1 — P that the interval

z—’(lj’fli(@sxsawt(i’vﬁ—%@ (1.4.1)

will include, on the average of many samples of size N , the p.d.f. mean
<z>. The function ¢(P,f) is called Student’s or Fisher’s ¢ and is tabulated

* An interval of this type is called a confidence interval. It should be distinguished
from a folerance interval which will contain a definite fraction of the population, e.g.,
a single observation. See, e.g., reference 1; or N. Arley and K. Buch, “Probability and
Statisties,” p. 168. Wiley, New York, 1950.

8 A valuable, readable discussion is given by W. E. Deming and R. T. Birge, Reus.
Modern Phys. 6, 119 (1934).
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giving probability levels P that a value of ¢ should be found at least as
large as that tabulated, as function of the number of degrees of freedom f,
which in this case is N — 1.9

Equation (1.4.1) indicates that the precision increases, i.e., that the
interval narrows as N increases. From this it might be inferred that with
repetition of the experiment the precision of the mean would improve
indefinitely. That would be so under ideal circumstances but in actual
experiments the probability of ocecurrence of systematic errors increases
with the length of the investigation.

Another limitation is due to the least count of the instruments used.
All the statements above depend on the approximation of a continuous
parent distribution function. This approximation improves with the
ratio of ¢ to the least count w. (w < %o is usually considered reasonable;
see Eisenhart et al.%) If w is large, and the readings come out constant,
statistical methods cannot be applied. If there are random errors in the
data, one can improve the precision by repetition, but a very large num-
ber of measurements are required if ¢ =~ w.*

In order to be fairly sure the accidental errors are in a state of statisti-
cal control, a certain number of measurements is necessary (how many
depends largely on the investigation, but the number must be fairly
large). Once such a state has been reached, further measurements can be
added to refine the precision of the mean, but on the hypothesis that each
added measurement can be joined with the preceding ones. For this
reason a continuously running control chart is very useful.

1.4.2. Rejection of Data

A closely related problem is the rejection of data. Often some criterion
for doing so is given, based on analysis of the data alone. This is not
recommended. A measured point should not be excluded on statistical
grounds alone. If a control chart as suggested in the previous paragraph is
used, and if a point or set of points seem out of control, the experimental
conditions should be carefully re-examined, and if no assignable causes
can be found, the point should be remeasured after settings have been re-
made, etc. This presumes that the analysis is made in the course of the

* If the least count is large, attention must be paid to providing a random character
for the data. For example, an improvement in the precision of a measurement of
length can be obtained by putting the ends of an object at random between the least
count marks of a scale rather than always setting one end to coincide with one of the
markers.

9R. A. Fisher and F. Yates, “Statistical Tables.” Oliver & Boyd, Edinburgh and
London, 1953.

10 C. Eisenhart, M. W. Hastay, and W. A. Wallis, eds., “Techniques of Statistical
Analysis.” MceGraw-Hill, New York, 1947.



