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Preface

Discrete subgroups I' of Lie groups G are foundational objects in modern
mathematics and occur naturally in different subjects. For example, integers form
a discrete subgroup Z of the Lie group R. They give rise to actions on homoge-
neous spaces associated with the Lie grdups G. These actions of I' can be used to
study the discrete groups I' and are also interesting on their own. For example,
when G is a noncompact semisimple Lie group, there is an associated Rieman-
nian symmetric space X = G/K, and the quotient I'\X is a locally symmetric
space, which is special Riemannian manifolds and often occur as moduli spaces in
algebraic geometry and number theory.

To understand better the structures and applications of discrete subgroups of
Lie groups and locally symmetric spaces, an instructional conference titled Geom-
etry, Topology and Analysis of Locally Symmetric Spaces and Discrete Groups was
held from July 17 to August 4, 2006 at the Morningside Center of Mathematics in
Beijing. The conference consisted of lecture series and research talks by experts
around the world. This proceedings contains expanded lecture notes and related
papers of some of the talks on the conference. These papers cover many topics re-
lated to the themes of this conference, such as algebra, analysis, geometry, number
theory and topology. We would like to thank all the speakers for their stimulating
talks and especially for the authors of the papers included in this book for their
efforts in writing up their lecture notes. We hope that they will present a global
perspective on the beautiful subjects around discrete subgroups of Lie groups and
locally symmetric spaces.

This three-week long conference was generously funded by the Morningside
Center of Mathematics, and also partially sponsored by the Higher Education
Press in China and the journal Pure end Applied Mathematics Quarterly. We
would like to thank the staff members of the center, in particular Xiaoning Li,
and the secretaries of the journal, in particular Chen Fang, for their devoted help
before and during the conference. Without them, this conference could not run
smoothly.

Managing Editor, Lizhen Ji
Kefeng Liu

Lo Yang

Shing-Tung Yau

November 2007
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A Survey on Divisible Convex Sets

Yves Benoist *

Abstract

We report without proof recent advances on the study of open properly convex
subsets £ of the real projective space which are divisible i.e. for which there exists
a discrete group I' of projective transformations which acts cocompactly on Q.

1 Introduction

The main objects I would like to describe in this lecture are called divisible convex
sets in [53]. They also come sometimes in other disguises as compact convex real
projective structures or as projective tilings in real projective geometry.

These divisible conver sets 1 want to discuss here are very concrete and
their definition is quite easy: those are properly convex open subsets Q of the
n-dimensional real projective space for which there exists a discrete group I' of
projective transformations which acts cocompactly on Q. To a non specialist, this
subject might look very narrow. We will disprove that impression and show how
rich this topic is. The history of the convex divisible sets began 50 years ago with
Benzecri thesis published in [7]. Since then our understanding of these divisible
convex sets has considerably progressed. They are now related to many different
kinds of mathematics as dynamical systems, Coxzeter groups, representation the-
ory, differential geometry, geometric group theory, partial differential equations,
moduli spaces, quasisymmetric spaces, ...

Even if the definition of the divisible convex sets is quite easy, the proof
that they do exist is not easy at all. Hence the construction of examples is an
important part of this topic (see Theorems 3.1, 6.4, 8.1 and 8.2). Recall that the
same is true for lattices in semisimple Lie group: they do exist but the proof of
their existence needs deep arguments. Once we know that convex divisible sets do
exist, we study their properties: one will focus on the algebraic properties of the
group I, on the regularity properties of the boundary of the convex set Q, on the
topological properties of the quotient orbifold I'\2, on the natural Finsler metric

*Ecole Normale Supérieure-CNRS, 45 rue d’Ulm, 75230 Paris. E-mail: benoist@dma.ens.fr,
www.dma.ens.fr/~benoist



2 Yves Benoist

on this orbifold, on the ergodic properties of the corresponding geodesic flow, on
the parametrization of the corresponding moduli spaces...

Before beginning this survey, just a few words on our notations. Let m > 2.
Instead of working on the real projective m-space P™, it will be more convenient for
us to work on its two-fold cover the projective m-sphere S™ which is the set of half-
lines in the real vector space V := R™*!. The group of projective transformations
of S™ is the group G = SL*(m + 1, R) of real matrices of determinant =1.

A subset 2 of S™ is convez if its intersection with any great circle is connected.
It is properly convez if moreover its closure Q does not contain two opposite points.
It is strictly convez if moreover its boundary 952 does not contain any open segment
i.e. any open arc of great circle. An open properly convex set is divisible if the
group Aut(Q) = {g € G / g(2) = Q} of automorphism of Q contains a discrete
subgroup T which acts properly and cocompactly on 2 i.e. such that the quotient
I'\Q is compact. Choosing a compact fundamental domain F for the action of I'
on , the image v(F) of the fundamental domain by the elements of I gives then
a projective periodic tiling of €.

Instead of working on the projective sphere S™, it is sometimes, but not
very often, simpler to work directly in the vector space V' = R™". Hence one
introduces the open convex cone C which is the inverse image of Q in V—{0} and
its automorphism group Aut(C) = {g € GL(RMH) / 9(C) = C}. We will say
that C is properly convez, strictly convex, divisible... when  is. One can prove
that C is divisible if and only if there exists a discrete subgroup of Aut(C) which
acts properly and cocompactly on C. Hence those two points of view are truly
equivalent.

I did my best to make this survey short. If it were reasonably expanded, this
text would fill hundreds of pages. I hope the reader would at least get from it a
feeling of the tools used in this topic which inherits not only the flavour of rank
one lattices and of higher rank lattices but also a new spiciness...

2 Symmetric convex sets

The simplest examples of divisible properly con vex sets are the symmetric ones.
Those are special instances of symmetric spaces. Firstly, let us say a few words on
them, after some basic definitions.

2.1 Hilbert distance and properness of the action

Every properly convex open set (2 in S™ is endowed with a distance dg called
Hilbert distance and defined by, for every z, =’ in Q, do(z,2’) = log(|z; 2';a; a'])
where a and o’ are the two points in 8 such that a, z, z’, o’ are aligned in this
order and where [z;2';a;a'] = %%‘,— is the cross-ratio of these four points (see
for instarce [11], [18] or [38]).

Note that every element of Aut(Q) is an isometry for the Hilbert distance of
Q. Since the balls of dg are compact the action of Aut(2) on Q is always proper.
Hence any discrete subgroup I" of Aut(f) always acts properly on Q. To prove
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that such a group divides 2, one has just to check that the action is cocompact
i.e. to find a compact subset F' of §) whose translates by I" cover 2.

2.2 Real projective structures

Any group T which divides a properly convex set 2 is finitely generated. Then,
according to Selberg lemma, it contains a subgroup I' of finite index which is
torsion free i.e. does not contain elements of finite order. Replacing I" by T one
can suppose that I' is torsion free. The compact quotient M := T'\Q} is then a
C*-manifold. N

The identification of the universal cover M of M with §2 induces a real pro-
jective structure on M i.e. a maximal atlas of charts with values in the projective
sphere S™ and with transition functions locally given by projective transforma-
tions of S™. Such a projective structure on M is called a properly convex real
projective structure.

Recall that a real projective structure on M is “equivalent” to the data (h, D)
where A : m(M) — G is a morphism called holonomy and D : M — S™ is an
equivariant local diffeomorphism called the developing map.

Hence, a properly convex real projective structure is a real projective struc-
ture for which the developing map is a diffeomorphism onto a properly convex
subset of S™.

2.3 Hyperbolic spaces

The simplest example of a convex divisible set is the round open disk H? in
dimension 2. The group I is then a discrete cocompact subgroup of PGL(2, R).
The existence of such subgroups and the pictures of the corresponding tilings of the
disc are well-known since Klein and Poincaré in the second half of the nineteenth
century. They are the starting point of hyperbolic geometry.

More generally, for all m > 2, the round open ball H™ ¢ S™ is a divisible
convex set. More precisely, this convex set H " is the set of half-lines in the
Lorentz cone Amy1 = {z € R™' / g(z) > 0 and z; > 0} where ¢(z) =
z?—23—--—z2, ;. Its group of automorphisms is the group Aut(H™) = O+(1,m)
of orthogonal transformations of ¢ which preserve H™". Hence our space H™,
endowed with its Hilbert distance, is nothing else than the hyperbolic m-space or,
more precisely, the “projective model of the hyperbolic m-space”. The group I is
then a discrete cocompact subgroup of O+ (1,m)

The existence of such groups I' was first known only for some small values
of m. Those were groups generated by reflections with respect to the faces of
some polyhedron in H™. As was shown later on by Vinberg, this “Coxeter group
construction” can not work for m large.

The construction of such groups I' for any integer m > 2, goes back to Siegel
in [50] in the early fifties and is obtained thanks to arithmetic groups (see for
instance the Chapter 2 of (6] for a self-contained proof).



4 Yves Benoist

2.4 Symmetric convex cones

Hence the hyperbolic m-space H™" is an example of convex divisible set Q. Note
that for this example the group Aut(?) of automorphisms of €2 acts transitively
on 2. One says that Q is homogeneous. Even more, for each point z in €, there
exists a symmetry with respect to z, i.e. an automorphism s, of €} of order 2
such that z is the only fixed point of s, in §2; one says that Q is symmetric. In
fact the symmetric convex sets are exactly the homogeneous convex sets for which
the automorphism group Aut(f2) is reductive. As before, we will say that C is
homogeneous or symmetric when ( is.

Those symmetric convex cones were classified by Koecher in the sixties using
the classification of Jordan algebras (see [21], [39] and [54]).

A properly convex set  in S™ is said reducible if the cone C is reducible i.e.
if it can be written as the sum C = C} + C; of two convex cones C; living in proper
subspaces V; of V. Otherwise, they are said irreducible. When C = C; + C,, the
cone C is symmetric if and only if C; and C» are symmetric. One can also show
that, in this case, C is divisible if and only if Cy and C; are divisible.

Theorem 2.1. (Koecher, 1965) The irreducible symmetric convez cones in R™
are given by the following list withn > 3 .
- The half-line Ay :={zeR /z>0} (with my = 1)
- The Lorentz cones Ap = {z € R” /22 ~22 — ... —z2 > 0andz; >0} (with
m; =mn)
- I, (R) = { positive symmetric nxn real matrices} (with my = (n? + n)/2)
- I,(C) = { positive Hermitian nxn complez matrices} (with m; = n?)
- I, (H)={ positive Hermitian nxn gquaternion matrices}  (withm,=2n2—n)
- 13(0), a symmetric cone such that Lie(Aut(I13(0))) = eg_26) @ R (with
my = 27).

Any symmetric cone is a product of irreducible symmetric cone.

Around the same time, Borel proved in [8] that every reductive real Lie group
contains a discrete cocompact subgroup. As a consequence, all the symmetric
convex sets are divisible. Hence Koecher list gives many examples of divisible
convex sets.

Later on, all the homogeneous convex sets were classified by Vinberg ([(55]).
No new examples of divisible convex set arise from this list since Vinberg proved
that, when 2 is homogeneous, one has the equivalence:
Q is symmetric <= The group Aut(Q) is unimodular.
Hence when 2 is homogeneous but not symmetric, its automorphism group can
not contain a discrete cocompact subgroup and 2 is not divisible.

The theory of divisible convex sets splits naturally in two different parts: the
strictly convex (see Chapter 4) and the non strictly convex case (see Chapter 9).
Hence it is important to notice that, among the symmetric convex sets the only
ones which are strictly convex are the hyperbolic m~spaces. Those are also the
only one with a boundary of class C!.
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3 First examples

Up to now all the examples of convex divisible sets that we have seen are symmetric
and the theory might look as nothing but a special case of the theory of cocompact
lattices in semisimple Lie groups.

3.1 Kac-Vinberg examples

In fact, in his thesis, Benzecri tried to prove that in dimension m = 2 all the convex
divisible sets are symmetric (i.e. are either the triangles or the hyperbolic disks).
However his proof needs a regularity hypothesis on the curve 92 that bounds €.
More precisely he needs that locally 952 is the graph of some convex function F
whose derivative f is “absolutely continuous”. We will see again this important
condition in Theorem 4.6.

A few years later, Kac and Vinberg ([33]) were able to construct the first
examples of divisible convex set which are not symmetric. Their examples were
two-dimensional and the groups I were Coxeter groups.

3.2 Coxeter groups

In the early seventies, Vinberg understood the general condition under which a
group I' generated by projective reflections fixing the faces of some convex poly-
hedron P of the sphere S™ will divide some properly convex open set  with P
as a fundamental domain. Quickly stated this theorem says that a convex polyhe-
dron P and its images by a group I' generated by projective reflections through its
faces tile some open convex set {2 of the projective sphere, as soon as two natural
necessary local conditions are satisfied. First, “around each 2-codimensional face
of P”: some rotations must have angle %" Second, “around each vertex of P”:
the corresponding Coxeter group must be finite. More precisely :

Theorem 3.1. (Vinberg, 1970) Let P be a convez polyhedron of S™ and, for
each face s of P, let 05 = Id — 03 ® v, be a projective reflection fizing this face
s. Choose the signs of a, such that P is the intersection of the half-spheres a, <
0. Suppose that these projective reflections satisfy, for every faces s,t such that
codim(sNt) =2
o (vs) <0 and (ou(vs) =0 as(v;) =0)
@3 (Vs) s () = 4cos?(;2-) with m,; > 2 integer.

Suppose also that for every verter z o'f P, the group T, generated by o, for s
containing x 18 a finite group.

Then the group I generated by all these reflections o, is discrete, the polyhedra
Y¥(P), for v in T, tile a convex open subset Q of S™ and hence I' divides Q.

See [56] or Chapter one of [6] for more details on this theorem which is a
generalization of a famous theorem of Tits (see [9]).

Note that the condition on the finiteness of the groups I'; can be easily
checked using the list of finite Coxeter groups (see [9] or [57]).
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Note also that ( is properly convex as soon as the vectors v, generate V' and
the linear forms @, generate V*.

The first explicit example where this theorem applies and gives a divisible
properly convex set @ which is not symmetric is Kac-Vinberg example and its
natural generalizations. In these examples, the polyhedron P is a simplex of
dimension m < 4.

We will see more examples later on.

Even if this construction gives examples of non symmetric divisible convex
open sets only in small dimension... it is worth studying the general properties of
the divisible convex sets. We will see later on how these properties will help us in
constructing examples in every dimension!

4 Strict convexity and regularity of 052

As Benzecri already understood in his thesis, the regularity of 0€2 is an important
issue in this topic.

4.1 Strict convexity and Gromov hyperbolicity

Before quoting Benzecri theorem, let us quote a more recent result which relates
the regularity of € and the strict convexity of Q. This result will be a corollary
of the following theorem.

Theorem 4.1. ([4].I) Let T' be a discrete group which divides some properly
convez open set § in S™. Then Q is strictly convez if and only if the group I is
Gromov hyperbolic.

For a precise definition of “Gromov hyperbolicity” see [23] and {27]. Roughly
it means that, “for some & > 0, the 3 sides of any geodesic triangle in the Cayley
graph of T' meet a mutual ball of radius 6”.

As a consequence of this theorem, the strict convexity of € is a property of
the abstract group I.

Note that T' divides also the dual convex set Q* i.e. the convex set whose
inverse image in R™"" is the dual cone C* := {f € V*/Vz € C—{0}, f(z) > 0}.
Since the strict convexity of * is equivalent to the C! regularity of 92, one gets
the following criterion

Corollary 4.2. ([4].I) A divisible properly convex open set has a boundary of
class C! if and only if it is strictly convexz.

4.2 Closedness of the orbit of 2

The main tool introduced by Benzecri to study the regularity of the boundary of
a divisible properly convex set is to endow the space of properly convex subset of
S™ with the Hausdorff distance and to study the G-orbit of {2 in this metric space.

Theorem 4.3. (Benzecri, 1960) Let Q be a divisible properly convez open set in
S™. Then the G-orbit of Q in the space of properly convex subset of S™ is closed.
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Since H™ is in the closure of the G-orbit of any properly convex open subset
of S™ whose boundary is of class C2, one gets the following corollary (see (7], [24]
and .also [31],[51]).

Corollary 4.4. (Benzecri, 1960) The only divisible properly convez open set in
S™ whose boundary is of class C2 is the hyperbolic space H™.

4.3 The geodesic flow and the regularity theorem

One can describe more precisely the regularity of Q2. The important tool one has
to introduce for that is the geodesic flow of the Hilbert metric.

Theorem 4.5. ([4].1) Let T be a torsion free discrete group which divides some
strictly convez open set Q in S™. Then the geodesic flow ¢ of the Hilbert metric
on the quotient manifold M = I'\S is Anosov.

Note that this flow ¢, is of class C! and that the geodesics of the projective
structure, i.e. the straight lines, are the geodesics of the Hilbert metric.

See [29] for a precise definition of Anosov flows. Roughly it means that
“the normal bundle to the flow is a direct sum of two continuous subbundles, one
contracted and one expanded by the flow ;.

One can show that this flow ¢, is topologically transitive i.e. it has a dense
orbit in M. However, one can show that when € is not H™, then the flow ¢, does
not preserve any finite measure on M which is absolutely continuous with respect
to the Lebesgue measure.

Using then the thermodynamical formalism for this Anosov flow ¢ as in [44],
using the Zariski density of I' (theorem 5.2 below), and using some properties of
Zariski dense subgroups of G as in [2], one gets as corollary the following regularity
theorem for the boundary of €.

Theorem 4.6. ([4].I) Let Q be a divisible strictly conver open set in S™. Suppose
that Q is not the hyperbolic space H™. Then

a) There ezists a € (0,1) such that the boundary 99 is C1+e,

b) The mazrimum Gmqz of these a satisfies omay < 1.

c) The curvature of 9 is concentrated on a subset of zero measure.

The condition C'** means that the normal map n : 8 — S™ ' is a-Hélder.
The curvature is the measure on 99 pull-back of the Lebesgue measure on st
by this normal map.

In dimension m = 2, the point a) is due to Kuiper in [41] and the point c) is
due to Benzecri in [7]: this is the absolute continuity assumption that we already
mentioned in Section 3.1.

Recently, O.Guichard ([28]) has given a formula for ay,4, thanks to the eigen-
values of the elements of I". As a consequence he has proven that this constant
Qmaz i8 the same for A2 and for d€2*.
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5 Irreducibility of {2 and irreducibility of I’

Let us now study some algebraic properties of I". A subgroup I' of G is said
irreducible if there are no I'-invariant non trivial subspaces in R™!. 1t is said
strongly irreducible if all subgroups of finite index are also irreducible.

5.1 Vey irreducibility theorem

It is clear that if a strongly irreducible group I" divides some properly convex set
Q then Q is irreducible (see the definition in 4). Vey proved in [53] the converse
of this assertion:

Theorem 5.1. (Vey, 1970) LetT be a discrete group which divides some properly
convez open set Q in S™. If Q is irreducible then T is strongly irreducible.

This theorem is very useful, since every convex divisible cone is a product of
irreducible convex divisible cones.

The main point in the proof is to check that the representation of I in V is
semisimple i.e. that every I'-invariant subspace of V has a I'-invariant supplemen-
tary subspace.

Once this is checked, it is easy to conclude, since every I'-invariant decom-
position V = V4 @ V;, gives a one parameter group a; of elements of G acting by
homotheties on each factor. These transformations commute with I". For ¢ small,
a compact fundamental domain F' of I" in €2 has still its image a.;(F) inside 2.
Hence one has a;(€2) = Q which contradicts the irreducibility of Q.

5.2 The density theorem

According to Vey irreducibility theorem, the Zariski closure S of T" is semisimple.
The following statement describes this Zariski closure.

Theorem 5.2. ([4].I1) Let T be a discrete group which divides some properly
convez open set 2 in S™. IfQ is irreducible and is not symmetric then T is Zariski
dense in SL(m + 1, R).

This means that T' is not contained in any proper algebraic subgroup of
SL(m + 1, R).

As a corollary, T’ does not preserve any non zero bilinear form on R

The main point in the proof is to check that the Zariski closure S of " has an
open orbit in the vector space R™". One uses then Kimura-Sato classification of
prehomogeneous vector space ([37]).

To finish this chapter, let us mention {47} which gives other algebraic prop-
erties for important families of groups preserving properly convex sets.

m+1

6 Moduli spaces of representations

Let us now describe an important feature of this topic. It will give us, for our
groups I', a geometric interpretation of some connected components of the space
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of representations of I'. This kind of interpretation is quite exceptional. Except for
rigidity phenomena, the only other known examples are for m of compact surfaces
as in [10] and [43].

6.1 Koszul openness theorem

Let Ty be a finitely generated group. One wants to understand the space

Fr, := {p € Hom(T'g, G) faithful with discrete image I' := p(T'g)
dividing a properly convex open set 2, in S™}

and more precisely the moduli space X, which is the quotient
Xr, = G\Fi To

for the action of G on Jr, by conjugation on the target.
Recall that from the beginning, one has G = SL*(m + 1, R).

Theorem 6.1. (Koszul, 1970) Fr, is open in Hom(Ty, G).

Note that this theorem is a combination of Koszul original theorem in [40]
and of Thurston holonomy theorem for (G, X )-structure (see [25] for this theorem).

To prove Theorem 6.1, Koszul gives a necessary and sufficient condition for
a real projective structure on a compact manifold M to be properly convex. Note
that M inherits from S™ a tautological oriented real line bundle £. This condition
is the existence of a positive section s of £ whose graph is “convex with positive
hessian” (see also [42] and [45]). The Theorem 6.1 is then a corollary since this
condition is open.

Thanks to his openness theorem, Koszul was also able to construct a few
examples of divisible properly convex sets which are non symmetric in dimension
m < 4. Even if these examples are obtained by a method different from Vinberg
Coxeter group construction, they are very similar.

However, we will see in Section 3 how Theorem 6.1 will allow us to construct
examples of non symmetric convex divisible sets in any dimension m > 2.

6.2 The closedness theorem

What is quite surprising is that the converse of Koszul theorem is true under a
very mild hypothesis. Choose some gy in Fr,.

Theorem 6.2. ([4].III) If po is strongly irreducible, then Fr, is closed in
HOm(Fo, G)
Hence Fr, is a union of connected components of Hom(T'g, G).

Recall that the condition “pg is strongly irreducible” means that the restric-
tion of pg to any subgroup of finite index is still irreducible. One can check, thanks
to Vey irreducibility theorem (Theorem 5.1), that this condition does not depend
on the choice of pp and is equivalent to the fact that all the subgroups of finite
index of I'g have trivial center.
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This converse was proven by Choi and Goldman when m = 2 in [16] and by
Inkang Kim when m = 3 and I'q is hyperbolic in [36].

The proof of the closedness theorem uses old and recent results on Zariski
dense subgroups of a semisimple Lie groups as in [1], [2] and [48] and [49].

6.3 The existence theorem

In the middle of the eighties, Johnson and Millson in [32] constructed interesting
deformation of discrete cocompact subgroups of O*(1,m)

Theorem 6.3. (Johnson, Millson, 1980) For any m > 2, there exist discrete
cocompact subgroups To of O (1,m) such that the identity representation py :
To — G can be included in a continuous family p, : Ty — G of representations
whose images ps(T'y), for s # 0 is Zariski dense.

It was only ten years later, that this construction was linked with Koszul
openness theorem in the following existence statement.

Theorem 6.4. ([3]) For any m > 2, there exist discrete subgroups T’ of G which
divide some non symmetric strictly convex open set Q in S™.

In this construction I is isomorphic to a cocompact lattice in O*(1,m), that
is why, by Theorem 4.1, this divisible convex set ) is strictly convex.
We will see in Section 2 a geometric interpretation of these examples.

7 Parametrization in dimension 2

In this section, we will suppose m = 2 and I'" torsion free. Hence I is isomorphic
to the fundamental group Iy of a compact surface ¥4 of genus g. We will suppose
that g > 1. The case g = 1 being very easy. One wants to parametrize all the
properly convex open sets {2 in S? which are divided by a group isomorphic to I'p.
Hence one wants to describe the moduli space Xr, defined in Section 6.1.

7.1 Goldman parametrization

The first description of Xr, for Iy := #1(X,) with g > 1 is due to Goldman in
[26].

Theorem 7.1. (Goldman, 1990) The moduli space Xr, is diffeomorptic to
R169-16

Note that the dimension of this moduli space is 8|x| where x = 2 — 2g is the
Euler characteristic of ¥,, instead of 3|x| for the Teichmiiller space: the numrber
3 = dim(SL(2,R)) has been replaced by 8 = dim(SL(3, R)).

The Goldman parametrization of Xp, in [26] is very similar to the Fenchsl-
Nielsen parametrization of the Teichmiiller space. The main point is to check that
if one fixes 3(g — 1) disjoint free homotopy classes of curves on ¥4, then one can
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cut ¥, along the unique embedded geodesics in these classes and get that way a
decomposition of X, in 2(g — 1) pairs of pants endowed with a projective structure
with hyperbolic geodesic boundary. Here hyperbolic means that the holonomy of
the geodesic is a diagonalizable matrix with three positive distinct eigenvalues and
that the corresponding lift in  of the geodesic connects an attractive fixed point
to a repulsive fixed point of this holonomy.

One checks that the projective structure on each pair of pants with fixed
hyperbolic holonomy for the three boundary components is parametrized by RZ.
The holonomy of each geodesic is parametrized by R? and the glueing along each
geodesic is also parametrized by R?. Hence one gets 2(29 — 2) +4(3g — 3) = 8|x|
parameters.

Goldman has also constructed a natural symplectic structure on this moduli
space and even, with Darvishzadeh in [20], an almost Kéhler structure. Hong
Chan Kim has described in [35] this natural symplectic structure.

7.2 Choi classification

Let us quote now Choi classification theorem in [13] which allows to reduce the
classification of all real projective structures on a compact surface £y to Goldman’s
parametrization of properly convex real projective surface with hyperbolic geodesic
boundary, parametrization we described in the previous section.

Theorem 7.2. (Choi, 1995) FEvery real projective compact surface X4, with
g > 1 decomposes uniquely along disjoint embedded closed geodesics with hyperbolic
holonomy into mazimal compact surfaces with convez interior.

These pieces either properly convez or annuli.

The real projective annuli with convex interior and hyperbolic geodesic bound-
aries are very easy to describe: they are quotients of a closed half plane with origin
removed.

Hence, this theorem tells us that, in dimension 2, among the real projective
manifolds, the most interesting ones are those obtained as quotient of a properly
convex divisible set 2. One does not know if the same is true in dimension 3.

7.3 Hitchin parametrization

Hitchin has parametrized in [30] one component, called Hitchin component, of the
moduli space of representations of I'q := m1(2,) in SL(m + 1, R).

When m = 2, according to the closedness theorem which is, in this case, due
to Choi and Goldman (see also [14]), this component is exactly Xr,.

If one fixes a complex structure on Xy, Hitchin parametrization, which uses
Higgs bundles, identifies X, with the vector space H°(Z4, K®2@ K ®2) of couples:
a quadratic and a cubic differential form on the Riemann surface ;. Note that,
according to Riemann-Roch theorem, this complex vector space is of complex
dimension 3(g — 1) + 5(g — 1) = 4|x|.



