@ STEPHEN R. SCHACH

T hird E dition

Cc L A S ST C A L

a n d

OBJECT-ORIENTED

S OFTWARE
ENGINEERING

CLASSICAL AND OBJECT-ORIENTED
SOFTWARE ENGINEERING

THIRD EDITION

Stephen R. Schach
Vanderbilt University

~———

gfw Irwin
fil McGraw-Hill

Boston, Massachusetts Burr Ridge, lllinois Dubuque, lowa
Madison, Wisconsin New York, New York San Francisco, California St. Louis, Missouri

Irwin/McGraw-Hill

A Division of The McGraw-Hill Companies
Earlier editions titled Software Engineering

©The McGraw-Hill Companies, Inc.,
1990, 1993, and 1996

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission
of the publisher.

Senior sponsoring editor: Elizabeth A. Jones

Marketing manager: Brian Kibby

Project editor: Rebecca Dodson

Production supervisor: Dina L. Treadaway

Compositor: Weimer Graphics, Inc.

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley & Sons Company

Cover illustrator: Joseph Stella (1877-1946), Brooklyn Bridge, oil on canvas,
84” x 76”, Yale University Art Gallery, Collection of Societe Anonyme

Library of Congress Cataloging-in-Publication Data

Schach, Stephen R.

Classical and object-oriented software engineering / Stephen R.

Schach. — 3rd ed.
p. cm.

Previous eds. published under title: Software engineering.

Includes bibliographical references and indexes.

ISBN 0-256-18298-1

L. Software engineering. 2. Object-oriented programming (Computer
science) L. Schach, Stephen R. Software engineering. 1I. Title.
QA76.758.833 1996
005.1—dc20 94-46905

Printed in the United States of America
567890D0O987

B Y T T T R T A T e 8 g e

The following
are registered
trademarks:

Access

ADF

ADW
Aide-de-Camp
Analyst/Designer
Apple
Bachman Product Set
Battlemap
Borland

Bull
CA-Tellaplan
ccc

Coca Cola
CVS

Demo 11
Emeraude
Excel
Excelerator
Focus
Foundation
Ford
FoxBASE
Guide
Hewlett-Packard
Honeywell
Hypercard
Hypertalk
IBM

IEW

IMS/360
Informix
Lotus 1-2-3
Macintosh
MacProject

Method/1
Microsoft

Motif

MS-DOS
MVS/360
Natural

Nomad

OMTool
1-800-FLOWERS
ORB Plus
0S/360

0S/370

0OS/VS2
Powerhouse
QAPartner
RAMIS-II
Rational

Rose

SoftBench
Software through Pictures
SPARCstation
SQL

Statemate

Sun

System Architect
Teamwork

The Design Machine
UNIX

VAX

VM/370

VMS

Windows

X11

XRunner

PREFACE

The Second Edition of Sofiware Engineering was published in 1993. At that time there were two major
approaches to software development, namely the structured paradigm and the object-oriented paradigm.
The structured paradigm was a tried and trusted approach, but it was not always successful. On the other
hand, the object-oriented paradigm seemed promising, but no more than that. The Second Edition
reflected this attitude. The book certainly included material on objects and on object-oriented design, but
at that time it was premature to stress a new paradigm that had not been proven to be superior to the
structured paradigm.

In the 3 years since the Second Edition was published, evidence has been steadily mounting that the
object-oriented paradigm is superior to classical software engineering approaches. In fact, a textbook
exclusively devoted to object-oriented software engineering would now be justified.

If that is so, then why is this book entitled Classical and Object-Oriented Software Engineering? Why
are the classical techniques even mentioned? There are two reasons for this.

First, this book is a textbook at the senior undergraduate or first year graduate level, and it is likely that
many students who use this book will be employed by organizations that still use classical software
engineering techniques. Furthermore, even if an organization is now using the object-oriented approach for
developing new software, existing software still has to be maintained, and this existing software is not object-
oriented. Thus, excluding classical material would not be fair to students using this text.

The second reason why both classical and object-oriented techniques are included is that it is impossible
to understand why object-oriented technology is superior to classical technology without fully understanding
classical approaches and how they differ from the object-oriented approach. Thus, the classical and object-
oriented approaches are not merely both described in this book, they are compared, contrasted, and analyzed.
This ensures that the reader will fully appreciate why so many software professionals feel that the object-
oriented approach is superior to classical approaches. Furthermore, if the student is employed at an
organization that has not yet adopted object-oriented technology, he or she will be able to advise that
organization regarding both the sirengths and the weaknesses of the new paradigm.

Thus, the major change in this edition is that the object-oriented paradigm is emphasized. Objects are
introduced in the very first chapter and are discussed throughout the book. Chapter 6, entitled ““Introduction
to Objects,” provides clear definitions of basic object-oriented concepts such as classes, objects, inheritance,
polymorphism, and dynamic binding (the chapter is an extended version of Chapter 9 of the second edition).
There is a new chapter on object-oriented analysis, a topic that was not covered in the second edition.
Particular attention is also paid to object-oriented life-cycle models, object-oriented design, management
implications of the object-oriented paradigm, and to the testing and maintenance of object-oriented software.
Metrics for objects and cohesion and coupling of objects are also covered. In addition, there are many briefer
references to objects, usually only a paragraph or even a sentence in length. The reason is that the object-
oriented paradigm is not just concerned with how the various phases are performed, but rather permeates the
way we think about software engineering. As a result, object-oriented technology pervades this book.

The software process is still the concept that underlies the book as a whole. In order to control the
process, we have to be able to measure what is happening to the project. Accordingly, the stress on metrics is
maintained.

vil

vili

PREFACE

The third edition continues and extends other themes of the previous editions.
For instance, the second edition contained a discussion of the Capability Maturity
Model (CMM) and how it was being used to improve the software process and
thereby boost productivity. In this edition, the ISO 9000-series is also discussed and
is contrasted with the CMM.

There have been a number of developments within the area of Computer-Aided
Software Engineering (CASE). On the one hand, some organizations have become
disillusioned with CASE, whereas others have introduced CASE and have observed
a marked improvement in areas such as productivity, software quality, and employee
morale. This book gives a balanced view of CASE and explains why organizations
have had such differing experiences with it. CASE tools for the object-oriented
paradigm are also included.

Topics that continue to be emphasized throughout the book include the importance
of maintenance and the need for complete and correct documentation at all times. The
importance of software reuse is still stressed, but now within the context of objects.

The book is still essentially language-independent. The few code examples are
in C++. To be more precise, wherever possible the ““C subset of C++" has been used.
In addition, care has been taken to use as few C idioms as possible so that the
material can also be understood by readers with little or no knowledge of C. The only
chapter where C++ (rather than C) is employed is Chapter 6, and detailed explana-
tions of specific C++ constructs have been provided there. In addition, the implemen-
tation of the Case Study in Appendix I uses some C++ constructs.

With regard to prerequisites, it is assumed that the reader is familiar with one
high-level programming language such as Pascal, C, BASIC, COBOL, or FOR-
TRAN. Although most of the examples are in C, no previous knowledge of C is
needed. In addition, the reader is expected to have taken a course in data structures.

How the Third Edition Is Organized

The order of the chapters reflects the order of the phases of the software life cycle.
Specifically, Part Two of this book (Chapters 7 through 14) consists of a phase-by-
phase treatment of the software life cycle, starting with the requirements phase and
ending with the maintenance phase. In order to prepare the reader for this material,
Part One contains the background material needed to understand the second part of
the book. For example, Part One introduces the reader to CASE, metrics, and testing
because each chapter of Part Two contains a section on CASE tools for that phase, a
section on metrics for that phase, and a section on testing during that phase.

In order to ensure that the key software engineering techniques of Part Two are
truly understood, each is presented twice. First, whenever a technique is introduced,
it is illustrated by means of the elevator problem. The elevator problem is the correct
size for the reader to be able to see the technique applied to a complete problem, and
it has enough subtleties to highlight both the strengths and weaknesses of the
technique being taught. Then, at the end of each chapter there is a continuing major
Case Study. A detailed solution to the Case Study is presented. The material for each

TN R T R el e boguiageem o

PREFACE

phase of the Case Study is generally too large to appear in the chapter itself. Instead,
only key points of the solution are presented in the chapter itself and the complete
material appears at the end of the book (Appendices C through I).

ix

The Problem Sets

In this edition, there are four types of exercises. First, as before, at the end of each
chapter there are a number of exercises intended to highlight key points. These
exercises are self-contained; the technical information for all of the exercises can be
found in this book.

Second, there is a software term project. It is designed to be solved by students
working in teams of three, the smaliest number of team members that cannot confer
over a standard telephone. The term project comprises 14 separate components, each
tied to the relevant chapter. For example, design is the topic of Chapter 11, so in that
chapter the component of the term project is concerned with designing the software
for the project. By breaking a large project into smaller, well-defined pieces, the
instructor can monitor the progress of the class more closely. The structure of the
term project is such that instructors may freely apply the 14 components to any other
project they choose.

Because this book is written for use by graduate students as well as upperclass
undergraduates, the third type of problem is based on research papers in the software
engineering literature. In each chapter an important paper has been chosen; wherever
possible, a paper related to object-oriented software engineering has been selected.
The student is asked to read the paper and to answer a question relating to its
contents. Of course, the instructor is free to assign any other research paper; the “For
Further Reading™ section at the end of each chapter includes a wide variety of
relevant papers.

New to this edition is the fourth type of problem, namely, problems related to the
Case Study. A number of instructors have told me that they believe their students
learn more by modifying an existing product than by developing a product from
scratch. Many senior software engineers in the industry with whom I have discussed
the issue agree with that viewpoint. Accordingly, each chapter in which the Case
Study is presented has at least three problems that require the student to modify the
Case Study in some way. For example, in one chapter the student is asked to redesign
the Case Study using a different technique from the one used for the Case Study. In
another chapter, the student is asked what the effect would have been of performing
the steps of object-oriented analysis in a different order. In order to make it easy to
modify the source code of the Case Study (Appendices C and I), the source code is
available by anonymous ftp from ftp.vuse.vanderbilt.edu (129.59.100.10) in
directory /pub/Software_Eng/Third_Edition, or on a diskette from Richard D.
Irwin, 1333 Burr Ridge Parkway, Burr Ridge, Illinois 60521.

The Instructor’s Manual contains detailed solutions to all the exercises, as well
as to the term project. The Instructor’s Manual is also available from Richard D.
Irwin, and so are transparency masters for all the figures in this book.

LR e e b R v 4 b TR

PREFACE

| Acknowledgments
I am indebted to those who reviewed this edition, including:

Dan Berry

The Technion

Doug Bickerstaft

Eastern Washington University

Richard J. Botting

California State University-San Bernardino
Buster Dunsmore

Purdue University

E.B. Fernandez

Florida Atlantic University

Donald Gotterbarn

East Tennessee State Universiry

Greg Jones

Utah State University

Peter E. Jones

University of Western Australia—Nedlands, Perth
David Notkin

University of Washington

Hal Render
University of Colorado—Colorado Springs

Bob Schuerman
State College, Pennsylvania

K.C. Tai
North Carolina State University

Laurie Werth
University of Texas—Austin

Lee White
Case Western Reserve University

George W. Zobrist
University of Missouri-Rolla

Jeff Gray, co-author of the Instructor’s Manual for this edition, has made many
helpful suggestions. In particular, I thank him for his ideas regarding the Z specifica-
tion of Section 8.8.1. I am grateful to Saveen Reddy for his comments on Sections
6.4 through 6.6. I should also like to thank Keith Pierce, University of Minnesota,
Duluth, for his helpful suggestions regarding test plans. Some of the material of the
MSG Case Study, presented at the end of Chapters 7 through 13 and in Appendices C

PREFACE

through I, has been taken from the Term Project in the Second Edition of this book
and from the Instructor’s Manual for the Second Edition (co-authored by Santhosh
R. Sastry).

I should like to single out three individuals at Richard D. Irwin to whom I am
especially grateful. I thank senior sponsoring editor Betsy Jones, project editor
Becky Dodson, and copy editor June Waldman for their many valuable contributions
to this book.

Finally, I thank my family for their wholehearted support and encouragement
throughout the writing of this edition. As with all my previous books, I have done my
utmost to ensure that family commitments took precedence over writing. However,
when deadlines loomed, this was sometimes not possible. At such times, they were
always understanding, and for this I am most grateful. As always, I dedicate this
book to my wife, Sharon, and my children, David and Lauren, with love.

Stephen R. Schach

BRIEF CONTENTS

PART 1 CHAPTER 10
Introduction to the Planning Phase 290

Software Process 1
CHAPTER 11%

CHAPTER 1 Design Phase 321

Scope of Software Engineering 3 CHAPTER 12
Implementation Phase 367

CHAPTER 2
The Software Process and
CHAPTER 13

Its Problems 28 Implementation and
CHAPTER 3 Integration Phase 438

Software Life-Cycle Models 52
CHAPTER 14

CHAPTER 4 Maintenance Phase 462
Stepwise Refinement, CASE, and

Other Tools of the Trade 81 Appendices

CHAPTER 5

Testing Principles 109 APPENDIX A

Osbert Oglesby, Art Dealer 481
CHAPTER 6

Introduction to Objects 139 APPENDIX B
Software
PART 2 Engineering Resources 484

The Phases of the

Software Process 195 APPENDIX ¢

MSG Case Study:
Rapid Prototype 486

CHAPTER 7

Requirements Phase 197 APPENDIX D

CHAPTER 8 MSG Case Study: Structured
Specification Phase 222 Systems Analysis 496
CHAPTER 9 APPENDIX E
Object-Oriented MSG Case Study:

Analysis Phase 268 Object-Oriented Analysis 500

Lol eel i RIERRRYY S SRR By

xiv BRIEF CONTENTS

APPENDIX F
MSG Case Study: Software Project
Management Plan 501

APPENDIX G
MSG Case Study: Design 506

APPENDIX H
MSG Case Study: Black-Box
Test Cases 527

APPENDIX |
MSG Case Study: Source
Code 531

Bibliography 564
Author Index 589

Subject Index 592

L pagmyeesr - o FELL AT AL e kst

CONTENTS

PART 1
Introduction to the
Software Process 1

CHAPTER 1
Scope of Software Engineering 3

1.1 Historical Aspects 4

1.2 Economic Aspects 7

1.3 Maintenance Aspects 8

1.4 Specification and Design Aspects 12
1.5 Team Programming Aspects 14
1.6 The Object-Oriented Paradigm 15
1.7 Terminology 20

Chapter Review 22

For Further Reading 22

Problems 23

References 25

CHAPTER 2
The Software Process and
Its Problems 28

2.1 Client, Developer, and User 30
2.2 Requirements Phase 31

221 Requirements Phase Testing 32
2.3 Specification Phase 33

2.3.1 Specification Phase Testing 34
2.4 Planning Phase 34

24.1 Planning Phase Testing 35
2.5 Design Phase 36

25.1 Design Phase Testing 37
2.6 Implementation Phase 37

2.6.1 Implementation Phase Testing 37
2.7 Integration Phase 38

2.7.1 Integration Phase Testing 38
2.8 Maintenance Phase 40

28.1 Maintenance Phase Testing 40
2.9 Retirement 41

2.10 Problems with Software Production:
Essence and Accidents 41
2.10.1 Complexity 43
2.10.2 Conformity 44
2.10.3 Changeability 45
2.10.4 Invisibility 46
2.10.5 No Silver Bullet? 47

Chapter Review 48

For Further Reading 48

Problems 49

References 50

CHAPTER 3
Software Life-Cycle Models 52

3.1 Build-and-Fix Model 52
3.2 Waterfall Model 53
3.2.1 Analysis of the Waterfall Model 56
3.3 Rapid Prototyping Model 58
33.1 Integrating the Waterfall and Rapid
Prototyping Models 60
3.4 Incremental Model 60
34.1 Analysis of the Incremental
Model 62
3.5 Spiral Model 65
35.1 Analysis of the Spiral Model 69
3.6 Comparison of Life-Cycle Models 70
3.7 Capability Maturity Model 70
3.8 ISO9000 74
Chapter Review 75
For Further Reading 76
Problems 77
References 77

CHAPTER 4
Stepwise Refinement, CASE, and
Other Tools of the Trade 81

4.1 Stepwise Refinement 81
4.1.1 Stepwise Refinement Example 82
4.2 Cost-Benefit Analysis 88

xvi CONTENTS

4.3 CASE (Computer-Aided Software
Engineering) 89
4.3.1 Taxonomy of CASE 89
4.4 Scope of CASE 91
4.5 Software Versions 95
4.5.1 Revisions 95
452 Variations 96
4.6 Configuration Control 97

4.6.1 Configuration Control during Product

Maintenance 99
4.6.2 Baselines 100

4.63 Configuration Control during Product

Development 100

4.7 Build Tools 101
4.8 Productivity Gains with CASE

Technology 102
4.9 Software Metrics 102
Chapter Review 104
For Further Reading 104
Problems 105
References 107

CHAPTER 5
Testing Principles 109

5.1 Quality Issues 110
5.1.1 Software Quality Assurance 110
5.1.2 Managerial Independence 111
5.2 Nonexecution-Based Testing 112
5.2.1 Walkthroughs 112
522 Managing Walkthroughs 113
523 Inspections 114
524 Comparison of Inspections and
Walkthroughs 116
5.2.5 Metrics for Inspections 117
5.3 Execution-Based Testing 117
5.4 What Should Be Tested? 118
5.4.1 Utility 119
542 Reliability 119
543 Robustness 120
544 Performance 120
545 Correctness 121
5.5 Testing versus Correctness Proofs 123

5.5.1 Example of a Correctness Proof 123

5.5.2 Correctness Proof Case Study 127

553 Correctness Proofs and Software
Engineering 128

5.6 Who Should Perform Execution-Based
Testing? 130

5.7 When Testing Stops 132

Chapter Review 133

For Further Reading 133

Problems 134

References 136

CHAPTER 6
Introduction to Objects 139

6.1 What Is a Module? 139

6.2 Cohesion 143
6.2.1 Coincidental Cohesion 144
6.2.2 Logical Cohesion 144
6.2.3 Temporal Cohesion 145
6.24 Procedural Cohesion 146
6.2.5 Communicational Cohesion 147
6.2.6 Informational Cohesion 147
6.2.7 Functional Cohesion 148
6.2.8 Cohesion Example 148

6.3 Coupling 149
6.3.1 Content Coupling 150
6.3.2 Common Coupling 150
6.3.3 Control Coupling 152
6.3.4 Stamp Coupling 153
6.3.5 Data Coupling 154
6.3.6 Coupling Example 154

6.4 Data Encapsulation 157
6.4.1 Data Encapsulation and Product

Development 159
6.4.2 Data Encapsuiation and Product
Maintenance 161

6.5 Abstract Data Types 166

6.6 Information Hiding 168

6.7 Objects 169

6.8 Polymorphism and Dynamic Binding 174

6.9 Cohesion and Coupling of Objects 176
6.10 Reuse 177
6.10.1 Impediments to Reuse 179
6.11 Reuse Case Studies 180
6.11.1 Raytheon Missile Systems
Division 180
6.11.2 Toshiba Software Factory 181
6.11.3 NASA Software 182

6.11.4 GTE Data Services 183
6.11.5 Hewlett-Packard 183
6.12 Reuse and Maintenance 184
6.13 Objects and Productivity 185
Chapter Review 187
For Further Reading 187
Problems 189
References 190

PART 2
The Phases of the
Software Process 195

CHAPTER 7
Requirements Phase 197

7.1 Requirements Analysis Techniques 198

7.2 Rapid Prototyping 199

7.3 Human Factors 201

7.4 Rapid Prototyping as a Specification
Technique 203

7.5 Reusing the Rapid Prototype 205

7.6 Other Uses of Rapid Prototyping 207

7.7 Management Implications of the Rapid
Prototyping Model 208

7.8 Experiences with Rapid Prototyping 209

7.9 Joint Application Design 211

7.10 Comparison of Requirements Analysis
Techniques 211

7.11 Testing during the Requirements Phase 212

7.12 CASE Tools for the Requirements
Phase 212

7.13 Metrics for the Requirements Phase 213

7.14 MSG Case Study: Requirements Phase 214

7.15 MSG Case Study: Rapid Prototype 216

Chapter Review 217

For Further Reading 218

Problems 219

References 220

CHAPTER 8
Specification Phase 222

8.1 The Specification Document 222
8.2 Informal Specifications 224

CONTENTS xvii

8.2.1 Case Study: Text Processing 225
8.3 Structured Systems Analysis 226
8.3.1 Sally’s Software Shop 226
8.4 Other Semiformal Techniques 234
8.5 Entity-Relationship Modeling 235
8.6 Finite State Machines 237
8.6.1 Elevator Problem: Finite State
Machines 239
8.7 Petri Nets 244
8.7.1 Elevator Problem: Petri Nets 247
88 Z 250
8.8.1 Elevator Problem: Z 251
8.8.2 Analysis of Z 253
8.9 Other Formal Techniques 255
8.10 Comparison of Specification
Techniques 256
8.11 Testing during the Specification Phase 256
8.12 CASE Tools for the Specification
Phase 257
8.13 Metrics for the Specification Phase 258
8.14 MSG Case Study: Structured Systems
Analysis 258
Chapter Review 260
For Further Reading 261
Problems 262
References 264

CHAPTER 9
Object-Oriented
Analysis Phase 268

9.1 Object-Oriented versus Structured
Paradigm 268

9.2 Object-Oriented Analysis 270

9.3 Elevator Problem: Object-Oriented
Analysis 272
9.3.1 Class Modeling 272
9.3.2 Dynamic Modeling 275
9.3.3 Functional Modeling 278

9.4 Object-Oriented Life-Cycle Models 281

9.5 CASE Tools for the Object-Oriented
Analysis Phase 283

9.6 MSG Case Study: Object-Oriented
Analysis 283

Chapter Review 287

For Further Reading 287

xviil CONTENTS

Problems 287
References 289

CHAPTER 10
Planning Phase 290

10.1 Estimating Duration and Cost 290
10.1.1 Metrics for the Size of a
Product 292
10.1.2 Techniques of Cost Estimation 296
10.1.3 Intermediate COCOMO 298
10.1.4 Tracking Duration and Cost
Estimates 302
10.2 Components of a Software Project
Management Plan 302
10.3 Seoftware Project Management Plan
Framework 304
10.4 1EEE Software Project Management
Plan 304
10.5 Planning of Testing 307
10.6 Planning of Object-Oriented Projects 309
10.7 Training Requirements 309
10.8 Documentation Standards 310
10.9 CASE Tools for the Planning Phase 311
10.10 Testing during the Planning Phase 314
10.11 MSG Case Study: Planning Phase 314
Chapter Review 314
For Further Reading 315
Problems 316
References 317

CHAPTER 11
Design Phase 321

11.1 Design and Abstraction 321
11.2 Action-Oriented Design 323
[1.3 Data Flow Analysis 323
11.3.1 Data Flow Analysis Example 324
11.3.2 Extensions 328
114 Transaction Analysis 328
11.5 Data-Oriented Design 331
11.6 Jackson System Development 332
11.6.1 Overview of Jackson System
Development 332
11.6.2 Why Jackson System Development
Is Presented in This Chapter 334

11.6.3 Elevator Problem: Jackson System
Development 335
11.6.4 Analysis of Jackson System
Development 343
11.7 Techniques of Jackson, Warnier, and
Orr 344
11.8 Object-Oriented Design 345
11.8.1 Elevator Problem: Object-Oriented
Design 346
11.9 Detailed Design 349
11.10 Comparison of Action-, Data-, and
Object-Oriented Design 351
11.11 Difficulties Associated with Real-Time
Systems 352
11.12 Real-Time Design Techniques 353
11.13 Testing during the Design Phase 354
11.14 CASE Tools for the Design Phase 355
11.15 Metrics for the Design Phase 356
11.16 MSG Case Study: Object-Oriented
Design 357
Chapter Review 358
For Further Reading 361
Problems 363
References 364

CHAPTER 12
Implementation Phase 367

12.1 Choice of Programming Language 367
12.2 Fourth Generation Languages 370
12.3 Structured Programming 373
12.3.1 History of Structured
Programming 373
1232 Why the goto Statement Is
Considered Harmful 375
124 Good Programming Practice 377
12.5 Coding Standards 382
12.6 Team Organization 383
127 Democratic Team Approach 385
12.7.1 Analysis of the Democratic Team
Approach 386
12.8 Classical Chief Programmer Team
Approach 387
12.8.1 The New York Times Project 389
12.8.2 Impracticality of the Classical Chief
Programmer Team Approach 390

12.9

12.10

12.11
12.12

12.13
12.14

12.15

12.16

12.17
12.18

12.19
12.20
12.21

12.22
12.23
12.24

12.25

Beyond Chief Programmer and

Democratic Teams 390

Portability 392

12.10.1 Hardware Incompatibilities 395

12.10.2 Operating System
Incompatibilities 396

12.10.3 Numerical Software
Incompatibilities 397

12.10.4 Compiler Incompatibilities 397

Why Portability? 399

Techniques for Achieving Portability 401

12.12.1 Portable System Software 402

12.12.2 Portable Application Software 402

12.12.3 Portable Data 404

Module Reuse 404

Module Test Case Selection 405

12.14.1 Testing to Specifications versus
Testing to Code 405

12.14.2 Feasibility of Testing to
Specifications 406

12.14.3 Feasibility of Testing to Code 406

Black-Box Module-Testing

Techniques 408

12.15.1 Equivalence Testing and Boundary
Value Analysis 409

12.15.2 Functional Testing 410

Glass-Box Module-Testing

Techniques 411

12.16.1 Structural Testing: Statement,
Branch, and Path Coverage 411

12.16.2 Complexity Metrics 413

Code Walkthroughs and Inspections 415

Comparison of Module-Testing

Techniques 416

Cleanroom 416

Testing Objects 417

Management Aspects of Module

Testing 420

12.21.1 'When to Rewrite Rather than Debug
a Module 421

Testing Distributed Software 422

Testing Real-Time Software 424

CASE Tools for the Implementation

Phase 426

MSG Case Study: Black-Box Test

Cases 427

CONTENTS xix

Chapter Review 428
For Further Reading 429
Problems 430
References 432

CHAPTER 13
Implementation and
Integration Phase 438

13.1 Implementation and Integration 438
13.1.1 Top-Down Implementation and
Integration 439
13.1.2 Bottom-Up Implementation and
Integration 441
13.1.3 Sandwich Implementation and
Integration 442
13.14 Implementation and Integration of
Object-Oriented Products 443
13.1.5 Management Issues during the
Implementation and Integration
Phase 443
13.2 Testing during the Implementation and
Integration Phase 444
13.3 Integration Testing of Graphical User
Interfaces 444
134 Product Testing 445
13.5 Acceptance Testing 446
13.6 CASE Tools for the Implementation and
Integration Phase 447
13.7 CASE Tools for the Complete Software
Process 447
13.8 Language-Centered Environments 448
13.9 Structure-Oriented Environments 448
13.10 Toolkit Environments 449
13.11 Integrated Environments 449
13.11.1 Process Integration 449
13.11.2 ool Integration 450
13.11.3 Other Forms of Integration 453
13.12 Environments for Business
Applications 453
13.13 Public Tool Infrastructures 454
13.14 Comparison of Environment Types 454
13.15 Metrics for the Implementation and
Integration Phase 455
13.16 MSG Case Study: Implementation and
Integration Phase 456

CONTENTS

Chapter Review 457
For Further Reading 457
Problems 458
References 459

CHAPTER 14
Maintenance Phase 462

14.1
14.2

14.3
14.4

14.5

14.6

14.7
14.8

14.9

14.10

Why Maintenance Is Necessary 462

What Is Required of Maintenance

Programmers 463

Maintenance Case Study 465

Management of Maintenance 466

144.1 Fault Reports 467

14.4.2 Authorizing Changes to the
Product 468

1443 Ensuring Maintainability 468

14.4.4 Problem of Repeated
Maintenance 469

Maintenance of Object-Oriented

Software 470

Maintenance Skills versus Development

Skills 473

Reverse Engineering 473

Testing during the Maintenance

Phase 474

CASE Tools for the Maintenance

Phase 475

Metrics for the Maintenance Phase 476

Chapter Review 476
For Further Reading 477
Problems 477
References 478

Appendices

APPENDIX A
Osbert Oglesby—Art Dealer 481

APPENDIX B
Software
Engineering Resources 484

APPENDIX ¢
MSG Case Study:
Rapid Prototype 486

APPENDIX D
MSG Case Study: Structured
Systems Analysis 496

APPENDIX E
MSG Case Study:
Object-Oriented Analysis 500

APPENDIX F
MSG Case Study: Software Project
Management Plan 501

APPENDIX G
MSG Case Study: Design 506

APPENDIX H
MSG Case Study: Black-Box
Test Cases 527

APPENDIX 1
MSG Case Study: Source
Code 531

Bibliography 564
Author Index 589
Subject Index 593

Iy S IERLe s rm i ee s e

