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PREFACE

The Second Edition of Sofiware Engineering was published in 1993. At that time there were two major
approaches to software development, namely the structured paradigm and the object-oriented paradigm.
The structured paradigm was a tried and trusted approach, but it was not always successful. On the other
hand, the object-oriented paradigm seemed promising, but no more than that. The Second Edition
reflected this attitude. The book certainly included material on objects and on object-oriented design, but
at that time it was premature to stress a new paradigm that had not been proven to be superior to the
structured paradigm.

In the 3 years since the Second Edition was published, evidence has been steadily mounting that the
object-oriented paradigm is superior to classical software engineering approaches. In fact, a textbook
exclusively devoted to object-oriented software engineering would now be justified.

If that is so, then why is this book entitled Classical and Object-Oriented Software Engineering? Why
are the classical techniques even mentioned? There are two reasons for this.

First, this book is a textbook at the senior undergraduate or first year graduate level, and it is likely that
many students who use this book will be employed by organizations that still use classical software
engineering techniques. Furthermore, even if an organization is now using the object-oriented approach for
developing new software, existing software still has to be maintained, and this existing software is not object-
oriented. Thus, excluding classical material would not be fair to students using this text.

The second reason why both classical and object-oriented techniques are included is that it is impossible
to understand why object-oriented technology is superior to classical technology without fully understanding
classical approaches and how they differ from the object-oriented approach. Thus, the classical and object-
oriented approaches are not merely both described in this book, they are compared, contrasted, and analyzed.
This ensures that the reader will fully appreciate why so many software professionals feel that the object-
oriented approach is superior to classical approaches. Furthermore, if the student is employed at an
organization that has not yet adopted object-oriented technology, he or she will be able to advise that
organization regarding both the sirengths and the weaknesses of the new paradigm.

Thus, the major change in this edition is that the object-oriented paradigm is emphasized. Objects are
introduced in the very first chapter and are discussed throughout the book. Chapter 6, entitled ““Introduction
to Objects,” provides clear definitions of basic object-oriented concepts such as classes, objects, inheritance,
polymorphism, and dynamic binding (the chapter is an extended version of Chapter 9 of the second edition).
There is a new chapter on object-oriented analysis, a topic that was not covered in the second edition.
Particular attention is also paid to object-oriented life-cycle models, object-oriented design, management
implications of the object-oriented paradigm, and to the testing and maintenance of object-oriented software.
Metrics for objects and cohesion and coupling of objects are also covered. In addition, there are many briefer
references to objects, usually only a paragraph or even a sentence in length. The reason is that the object-
oriented paradigm is not just concerned with how the various phases are performed, but rather permeates the
way we think about software engineering. As a result, object-oriented technology pervades this book.

The software process is still the concept that underlies the book as a whole. In order to control the
process, we have to be able to measure what is happening to the project. Accordingly, the stress on metrics is
maintained.
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PREFACE

The third edition continues and extends other themes of the previous editions.
For instance, the second edition contained a discussion of the Capability Maturity
Model (CMM) and how it was being used to improve the software process and
thereby boost productivity. In this edition, the ISO 9000-series is also discussed and
is contrasted with the CMM.

There have been a number of developments within the area of Computer-Aided
Software Engineering (CASE). On the one hand, some organizations have become
disillusioned with CASE, whereas others have introduced CASE and have observed
a marked improvement in areas such as productivity, software quality, and employee
morale. This book gives a balanced view of CASE and explains why organizations
have had such differing experiences with it. CASE tools for the object-oriented
paradigm are also included.

Topics that continue to be emphasized throughout the book include the importance
of maintenance and the need for complete and correct documentation at all times. The
importance of software reuse is still stressed, but now within the context of objects.

The book is still essentially language-independent. The few code examples are
in C++. To be more precise, wherever possible the ““C subset of C++" has been used.
In addition, care has been taken to use as few C idioms as possible so that the
material can also be understood by readers with little or no knowledge of C. The only
chapter where C++ (rather than C) is employed is Chapter 6, and detailed explana-
tions of specific C++ constructs have been provided there. In addition, the implemen-
tation of the Case Study in Appendix I uses some C++ constructs.

With regard to prerequisites, it is assumed that the reader is familiar with one
high-level programming language such as Pascal, C, BASIC, COBOL, or FOR-
TRAN. Although most of the examples are in C, no previous knowledge of C is
needed. In addition, the reader is expected to have taken a course in data structures.

How the Third Edition Is Organized

The order of the chapters reflects the order of the phases of the software life cycle.
Specifically, Part Two of this book (Chapters 7 through 14) consists of a phase-by-
phase treatment of the software life cycle, starting with the requirements phase and
ending with the maintenance phase. In order to prepare the reader for this material,
Part One contains the background material needed to understand the second part of
the book. For example, Part One introduces the reader to CASE, metrics, and testing
because each chapter of Part Two contains a section on CASE tools for that phase, a
section on metrics for that phase, and a section on testing during that phase.

In order to ensure that the key software engineering techniques of Part Two are
truly understood, each is presented twice. First, whenever a technique is introduced,
it is illustrated by means of the elevator problem. The elevator problem is the correct
size for the reader to be able to see the technique applied to a complete problem, and
it has enough subtleties to highlight both the strengths and weaknesses of the
technique being taught. Then, at the end of each chapter there is a continuing major
Case Study. A detailed solution to the Case Study is presented. The material for each
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PREFACE

phase of the Case Study is generally too large to appear in the chapter itself. Instead,
only key points of the solution are presented in the chapter itself and the complete
material appears at the end of the book (Appendices C through I).

ix

The Problem Sets

In this edition, there are four types of exercises. First, as before, at the end of each
chapter there are a number of exercises intended to highlight key points. These
exercises are self-contained; the technical information for all of the exercises can be
found in this book.

Second, there is a software term project. It is designed to be solved by students
working in teams of three, the smaliest number of team members that cannot confer
over a standard telephone. The term project comprises 14 separate components, each
tied to the relevant chapter. For example, design is the topic of Chapter 11, so in that
chapter the component of the term project is concerned with designing the software
for the project. By breaking a large project into smaller, well-defined pieces, the
instructor can monitor the progress of the class more closely. The structure of the
term project is such that instructors may freely apply the 14 components to any other
project they choose.

Because this book is written for use by graduate students as well as upperclass
undergraduates, the third type of problem is based on research papers in the software
engineering literature. In each chapter an important paper has been chosen; wherever
possible, a paper related to object-oriented software engineering has been selected.
The student is asked to read the paper and to answer a question relating to its
contents. Of course, the instructor is free to assign any other research paper; the “For
Further Reading™ section at the end of each chapter includes a wide variety of
relevant papers.

New to this edition is the fourth type of problem, namely, problems related to the
Case Study. A number of instructors have told me that they believe their students
learn more by modifying an existing product than by developing a product from
scratch. Many senior software engineers in the industry with whom I have discussed
the issue agree with that viewpoint. Accordingly, each chapter in which the Case
Study is presented has at least three problems that require the student to modify the
Case Study in some way. For example, in one chapter the student is asked to redesign
the Case Study using a different technique from the one used for the Case Study. In
another chapter, the student is asked what the effect would have been of performing
the steps of object-oriented analysis in a different order. In order to make it easy to
modify the source code of the Case Study (Appendices C and I), the source code is
available by anonymous ftp from ftp.vuse.vanderbilt.edu (129.59.100.10) in
directory /pub/Software_Eng/Third_Edition, or on a diskette from Richard D.
Irwin, 1333 Burr Ridge Parkway, Burr Ridge, Illinois 60521.

The Instructor’s Manual contains detailed solutions to all the exercises, as well
as to the term project. The Instructor’s Manual is also available from Richard D.
Irwin, and so are transparency masters for all the figures in this book.
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