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Preface

This textbook aims to briefly outline the main directions in which the geometrization
of thermodynamics has been developed in the last decades. The textbook is
accessible to the people trained in thermal sciences but not necessarily with solid
formation in mathematics. For this, in the first part of the textbook a summary of the
main mathematical concepts is made. In some sense, this makes the textbook
self-consistent. The rest of the textbook consists of a collection of results previously
obtained in this young branch of thermodynamics. The content is organized as
follows.

The first part of the textbook, consisting of four chapters, presents the main
mathematical tools. Thus, Chap. 1 presents the historical background of the
geometrization of mechanics and thermodynamics. In Chap. 2 some basic concepts
are briefly reminded, such as the set theory, the relationships theory, and the theory
of simple algebraic structures. Then, the essential concepts used in the theory of
linear spaces are introduced. The chapter ends by presenting some results con-
cerning the coordinate transformations and the classification of physical quantities
in relation with these transformations. Chapter 3 describes the main types of vectors
and the standard method of vector geometrization. Then elementary results of
vector calculus are presented. The chapter ends with a very brief introduction to the
exterior differential calculus, accompanied by some specific useful results.
Chapter 4 describes results of Riemann geometry. Two approaches are presented.
The first one is the classic approach. The second approach is based on the theory of
differential manifolds and tangent spaces. Both approaches allow defining the
tensors of different orders, the Riemann metric and the covariant differentiation,
among others. The parallel between the two approaches is very useful for a deeper
understanding of concepts.

The second part of the textbook, consisting of five chapters, refers to the
application of geometric methods in equilibrium thermodynamics. Chapter 5
summarizes some results of equilibrium thermodynamics. The approach based on
potentials is presented, including the standard procedures using the energy repre-
sentation and the entropy representation. Finally, the extreme principles and the
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mathematical conditions for thermodynamic stability are presented. Chapter 6
briefly shows some results of using tools of contact geometry in thermodynamics.
Here only the first law of thermodynamics is geometrized. The chapter ends with a
few examples of contact currents in thermodynamics. In Chap. 7 an approach based
on statistical methods, which allows defining the notions of thermodynamic metric
and thermodynamic distance, is presented. The second law of thermodynamics
plays a key role in this context. The relationship between the thermodynamic
distance and the entropy production is analyzed and links with the Gouy-Stodola
theorem are highlighted. Horse-carrot type theorems are also introduced. The manner
in which the thermodynamic curvature can be defined is exposed in Chap. 8. The
chapter contains examples of calculation of thermodynamic curvature for simple
systems. Chapter 9 presents a covariant theory of the thermodynamic fluctuations
and analyzes the level of approximation introduced by the classical theory of fluc-
tuations and its Gaussian approximation.

The textbook is a more extensive version of a section of the course of Advanced
Thermodynamics presented for master students at the Faculty of Mechanical
Engineering, Polytechnic University of Bucharest, starting from the 2003-2004
academic year. The textbook is presented with an ease of access for the readers with
education in natural and technical sciences. Thus, most mathematical demonstra-
tions of the theoretical results with higher degree of difficulty are omitted and
references for the relevant literature are provided.

As usual, the preparation of such a work i$ the result of numerous interactions,
discussions, consultations, and collaborations. It is a pleasure to remind here some
of them. I received special support from colleagues in the European network
CARNET (Carnot Network). This cooperation was institutionalized during the
years 1994-1999 by two Copernicus projects on thermodynamic topics funded by
the European Commission. In particular, I must thank Prof. Bjarme Andresen
(University of Copenhagen), Prof. Ryszard Mrugala (University of Torun, Poland),
and Dr. Lajos Diodsi (Research Institute for Particle and Nuclear Physics, Budapest)
whose publications were massively used in the present work. During the elabora-
tion of the material I received technical support from Prof. Peter Salamon
(University of San Diego). Also, discussions with Prof. Constantin Udriste
(Polytechnic University of Bucharest) allowed a better understanding of the fun-
damentals of mathematics.

Viorel Badescu
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Chapter 1
Introduction

Theoretical thermodynamics has been developed from the practical studies of
thermal engines operation. Initially, it was based on the empirical usage of a
combination of mechanical and thermal notions. The absence of a sound basis,
consisting of well-defined and understood concepts, has often been noticed by
personalities who made important contributions in the field, among which we quote
Josiah Willard Gibbs, Hermann von Helmholtz, Pierre Duhem and Walther Nernst.
They, and many others, have tried to introduce rigor in the theoretical approach by
avoiding cyclical logical reasoning and contradictions. Constantin Caratheodory
was the first who succeeded to build an axiomatic system for equilibrium ther-
modynamics (Caratheodory 1909). Thus, notions such as measurable temperature,
heat and entropy were defined. Also, empirical assumptions were explained and
simplified. From the very beginning, the approach of Caratheodory was analogous
in spirit and practice with the axiomatic formulation of Euclidean geometry
(Antoniou 2002). The structure of equilibrium thermodynamics, expressed in
mathematical terms by Pfaff formis, turns out to be in some sense analogous to the
structure of Hamiltonian mechanics and symplectic geometry (Rastal 1970;
Peterson 1979).

The criteria proposed by Caratheodory were subsequently used to develop two
main lines of research. First, the notion of thermodynamic variable has been clar-
ified, making difference between extensive and intensive variables. Second, the
concepts of classical thermodynamics have been extended for non-equilibrium
situations. ’

Equilibrium thermodynamics was formulated based on conjugate pairs of
independent variables, known as generalized coordinates (such as volume, area,
length, electric charge) and generalized forces (mechanical forces, pressure, surface
tension, electric voltage) (Redlich 1968). Generalized coordinates actually corre-
spond to extensive variables because they depend on the size (extension) of the
system, while the generalized forces correspond to the intensive variables because
they are localized in space and time. This simple observation led to the formulation

© Springer International Publishing Switzerland 2016 3
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4 1 Introduction

of the fundamental thermodynamic concepts by using the measure theory (Gurtin
et al. 1986). In this version, the extensive variables are positive or negative
quantities on Euclidean spaces while the intensive variables are associated densities,
defined mathematically as Radon-Nykodym derivatives. In case of extensive
variables represented by absolute continuous quantities, the corresponding intensive
variables are absolute integrable functions. In case of extensive variables repre-
sented by singular measures, located on surfaces, curves or fractals, the corre-
sponding intensive variables are generalized functions (Antoniou and Suchanecki
1999). The formulation of classical thermodynamics by using of the measure theory
has a number of advantages, among which we can mention the possibility of
rigorous generalization to the case of continuous media, to the case of special and
general relativity and to non-equilibrium situations, respectively (Antoniou 2002).

The usage of geometrical methods in thermodynamics was inspired by their
previous applicability in the field of dynamical systems theory. The idea of
approaching the solutions of the dynamic equations from a geometrical point of
view is due to Henri Poincaré. However, Nikolay Mitrofanovich Krylov was the
first who tried to formulate the statistical mechanics by using the Riemann geom-
etry (see the review by Krylov (1979)). Krylov’s ideas were developed by several
groups of researchers (see Caiani et al. 1998; Casetti et al. 2000 and references
therein). In general, conclusive results have been obtained only for constant neg-
ative curvature of the space of configurations. There are attempts to replace the
Riemannian manifolds by Finsler manifolds, which have the advantage of allowing
the geometrization of the speed dependent potentials (Dryuma 1994). Starting from
the identification of the trajectories of a Hamiltonian dynamical system with geo-
desics in the configuration space equipped with Jacobi or Eisenhart metrics, one can
develop a geometric theory of mechanics (Casetti et al. 2000). Interesting results
have been obtained, which show, for example, that chaos can be induced not only
by negative curvatures but also by positive curvatures of the configuration space,
provided that these curvatures oscillate along the geodesics. In case of systems with
very large number of particles and having large extension (what is commonly called
“the thermodynamic limit”) it is possible to describe the dynamical instability by
using dynamic models that are independent of the dynamics of microparticles,
which allows the analytical estimation of the largest Lyapunov coefficient as a
function of the mean value and the fluctuations of the curvature of the configuration
space. The main difficulty consists in the extremely complicated form of the
geometry of the configuration space, in case of systems with many particles.
Therefore, a number of more or less obvious simplifications are used in literature.
Usually, these simplifications are a posteriori justified, by comparison with results
obtained from computer simulations using statistical physics methods.

Applying geometric methods in thermodynamics was carried out mainly in the
classical theory of equilibrium (see Ruppeiner 1991; Gross and Votyakov 2000). In
this regard several procedures of geometrization have been proposed. Probably the
most popular is the approach developed by Weinhold (1975). It relies on the fact
that the differentials of the thermodynamic functions can be interpreted as vectors in
a vector space. Then, one can propose a definition of the inner product on that
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vector space, in connection with the mathematical expression of the second law of
thermodynamics, which ultimately leads to the positivity of the metrics attached to
the vector space. The procedure initiated by Weinhold experienced many exten-
sions, some of which will be mentioned throughout this book.

On the other hand, some geometrical aspects of the hypersurface of constant
energy in the phase space were used in case of the microcanonical ensemble to
define the temperature and the specific heat (Rugh 1997; Giardina and Livi 1998).
Therefore, one can make distinction between the use of geometrical and topological
concepts at the level of the macroscopic phase space (associated with phe-
nomenological thermodynamics) and at the level of the microscopic phase space
(associated with statistical thermodynamics), respectively.

When a system undergoes a phase change, fluctuations in the curvature of the
phase/configurations space, as a function of temperature or energy, have a singular
behavior in the transition point. This singularity can be described using a geometric
model. In such a model the singularity of curvature fluctuations originates in the
topology of the phase/configurations space. This is the argument leading to
the introduction of the so-called topological assumption, which states that phase
changes (at least, the continuous ones) are connected to a specific change of the
topology of system’s space of phase/configurations. This assumption allows the
usage within the statistical thermodynamics of existing results in mathematics, such
as those obtained in Morse theory. Therefore, one can make such a connection
between mathematics (topology) and statistical thermodynamics (the theory of
phase change). Existing results in the literature show that from the point of view of
Morse theory the essential information is stored in the potential energy function. If
the latter depends solely on coordinates, the usage of topological methods can be
made by restriction from the phase space to the configurations space.

An important theorem shows the need of topological changes of the hypersur-
face of constant energy, for the emergence of a first-order or second-order phase
change (Casetti et al. 2000). The demonstration is based on several assumptions
concerning the diffeomorphicity of the surface and the uniform convergence of the
Helmholtz free energy towards the thermodynamic limit for a very large number of
particles. The fact that topological changes can occur regardless of the number of
particles opens the possibility of describing the phase change in finite systems such
as nuclear and atomic clusters, polymers and proteins, as well as nanoscopic and
mesoscopic structures.

A geometric theory of thermodynamic fluctuations has already been proposed
(for a review see, Ruppeiner 1995). The theory applies to classical, extensive,
thermodynamics, in all cases where there are two independent coordinates (iden-
tified in that situation with two thermodynamic parameters). Then, a metric is
defined on the manifold determined by the two coordinates, which becomes a
Riemann manifold. Using known results of Riemann geometry is simplified in case
of extensive thermodynamics with positive defined metrics, unlike in the theory of
relativity (there, the associated Riemann manifold has four dimensions and its
metric is allowed not to be positive definite). Arguments have been provided in
support that the theory of fluctuations and, implicitly, the theory of thermodynamic



