LINUX &%t 412 (ZENiR)

LINUX

SYSTEM

O’REILLY" |
% K% iR ROBERT LOVE &

LINUX

System Programming
LINUXZ 5t 4wtz (o)

Robert

O'REILLY*

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo
O'Reilly Media, Inc. # A & d X 5 th s A i ik
R K HhRAE

EHEREE (CIP) ¥iE

Linux Z4E4R7E: FX / (%) BEX (Love,R.) FE.
RENA . —Ft: FREEAF R, 20083

35430 Linux System Programming

ISBN 978-7-5641-1141-0

I.L- I3 I Linx IERGE - BFIRI-K
3¢ IV .TP316.89

o E iR B 1R CIP 3RiF (2008) %5 024164 5

ITH A RUR S VAL & R |
B . 10-2007-225 &

©2007 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2008. Authorized reprint of the original English edition, 2007 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

¥ & M O'Reilly Media, Inc. i 3& 2007,

F W PR A b K 4 AL K 2008, S0 FF R 80 A4l 48 4 5]tk AL A- 4 AL 89 5T A & —— O'Reilly
Media, Inc. #5#% T,

BBHA, A B E&HT, KBRS SHFTFUTH X T4,

Linux R4 EE

MR R TT: AREAFHR

o dk: ERHEE2S R4 : 210096
H R A T

] hik: http://press.seu.edu.cn

B, F-HfE. press@seu.edu.cn

Bl Ril: P ENRIFRA =

A, 7873d x 980Kk 16 1A
. 24.5E5k

¥. 412°FF%

o 2008 23 AE 1R

. 2008 4E 3 A% 1k ENRY

_%

%

th

: ISBN 978-7-5641-1141-0/TP - 185

. 1~2500

. 59.00 7% ()

R EBEANERR A, WEESREIRS WS, BiE (FK). 025-83792328

HZesIFHIH

O’Reilly Media, Inc. 45

ShT R E 3 SRR A B AR A IRR R B R, AR EF AT EYLE S HRLE
O’Reilly Media, Inc. IR AW RE LR, WMEFHR -—HMIZARANELENEXL
HHEAREE,

O’Reilly Media, Inc. £ #: % _E7# Unix, X, Internet I F R AGEBHBREA T
BHAHR AT, RESERILHR L,

M B %4 (The Whole Internet User’s Guide & Catalog) (#)AL EBIEIEH
ZHHEREEMN SO AN 2 —) F GNN (B R Internet || A FIRGAL M 3E), B
WebSite (55— FZHPCHIWebfiR % 83 %), O'Reilly Media, Inc.—H 4bF Internet
R RHIBAT .

BT E£BHEORBFEB, O’Reilly Media, Inc. 2 BFREMNITHEVEBHERE —&—
AL —RER. SREZHEITHEIEBHEREMEL, O'Reilly Media, Inc. RHRE
RN T LT R, XfER O'Reilly Media, Inc, FEEL T —/MHE¥ AR TH M HRE
KI5 8. O’Reilly Media, Inc. BT ARIZRER A RCARITEBRRF A, B RTLR
M ARE K. O'Reilly Media, Inc. &AW £ BHEHIEE A — TEHEHEXH
BRUIBEARER. SHERK, MAEREFEE, O'Reilly Media, Inc. fk 5715 3
#HER, HH O’Reilly Media, Inc. EHFHBSHAEILFBKEE, AL O’ Reilly
Media, Inc. B W LEFEEMF LB,

tH AR 35t AR

R T R AR R BRI R A, AREAS A - BARE R BOFHE, 8
PLEARMIR R AT T k7= BB 3 B 3 AR B R T B AR, R,
HHRHL SR A HE AR ST B 2 e th R TR), S T BBl B R R 7R B]
TRESMBHIE A, KA A% E O'Reilly Meida, Inc. ik il , #k
BSIHIEA R RRMIREAR REELETIREH BANEE, MR RE Bk
PRV EMRBIRE Hd, BEMBBHREEIES “FE” B8, FE 5
IR RILGIEE .,

BATHIRMA R, BT 5 A EE S E A AT B R A R FHEYLE IR A B
PIEAIN A H ST R T AR B B, 3 N HHELHL B R WO R R AT BRI, ki
RERHN AR ML,

BT AR B RCEN IR 5, o d .

o A SQL (E2ETER)

e JavaScript & DHTML Cookbook % — kR (BZEQER)
s BB ERE (MOR)

* SOA ik (ENRR)

o %3] PHP & MySQL % "R (BE11R)

e Linux RGEHE (RENAR)

e Beautiful Code (E2EHR)

¢ Mac OS X: The Missing Manual, Leopard Editon (RENAR)
o EPEEEMES (REENAR)

o WPF 4372 % ik (SZENKR)

s WMEFEREAR (FER)

e 2£2] Python ¥ =Rk (RENKR)

* Ruby B iHES (FENAR)

Foreword

There is an old line that Linux kernel developers like to throw out when they are feel-
ing grumpy: “User space is just a test load for the kernel.”

By muttering this line, the kernel developers aim to wash their hands of all responsi-
bility for any failure to run user-space code as well as possible. As far as they’re
concerned, user-space developers should just go away and fix their own code, as any
problems are definitely not the kernel’s fault.

To prove that it usually is not the kernel that is at fault, one leading Linux kernel
developer has been giving a “Why User Space Sucks” talk to packed conference
rooms for more than three years now, pointing out real examples of horrible user-
space code that everyone relies on every day. Other kernel developers have created
tools that show how badly user-space programs are abusing the hardware and drain-
ing the batteries of unsuspecting laptops.

But while user-space code might be just a “test load” for kernel developers to scoff
at, it turns out that all of these kernel developers also depend on that user-space code
every day. If it weren’t present, all the kernel would be good for would be to print
out alternating ABABAB patterns on the screen.

Right now, Linux is the most flexible and powerful operating system that has ever
been created, running everything from the tiniest cell phones and embedded devices
to more than 70 percent of the world’s top 500 supercomputers. No other operating
system has ever been able to scale so well and meet the challenges of all of these dif-
ferent hardware types and environments.

And along with the kernel, code running in user space on Linux can also operate on
all of those platforms, providing the world with real applications and utilities people
rely on.

In this book, Robert Love has taken on the unenviable task of teaching the reader
about almost every system call on a Linux system. In so doing, he has produced a
tome that will allow you to fully understand how the Linux kernel works from a-
user-space perspective, and also how to harness the power of this system.

Xi

The information in this book will show you how to create code that will run on all of
the different Linux distributions and hardware types. It will allow you to understand
how Linux works and how to take advantage of its flexibility.

In the end, this book teaches you how to write code that doesn't suck, which is the
best thing of all.
—Greg Kroah-Hartman

xii | Foreword

Preface

This book is about system programming—specifically, system programming on
Linux. System programming is the practice of writing system software, which is code
that lives at a low level, talking directly to the kernel and core system libraries. Put
another way, the topic of the book is Linux system calls and other low-level func-
tions, such as those defined by the C library.

While many books cover system programming for Unix systems, few tackle the sub-
ject with a focus solely on Linux, and fewer still (if any) address the very latest Linux
releases and advanced Linux-only interfaces. Moreover, this book benefits from a
special touch: I have written a lot of code for Linux, both for the kernel and for sys-
tem software built thereon. In fact, I have implemented some of the system calls and
other features covered in this book. Consequently, this book carries a lot of insider
knowledge, covering not just how the system interfaces should work, but how they
actually work, and how you (the programmer) can use them most efficiently. This
book, therefore, combines in a single work a tutorial on Linux system programming,
a reference manual covering the Linux system calls, and an insider’s guide to writing
smarter, faster code. The text is fun and accessible, and regardless of whether you
code at the system level on a daily basis, this book will teach you tricks that will
enable you to write better code.

Audience and Assumptions

The following pages assume that the reader is familiar with C programming and the
Linux programming environment—not necessarily well-versed in the subjects, but at
least acquainted with them. If you have not yet read any books on the C program-
ming language, such as the classic Brian W. Kernighan and Dennis M. Ritchie work
The C Programming Language (Prentice Hall; the book is familiarly known as K&R),
I highly recommend you check one out. If you are not comfortable with a Unix text
editor—Emacs and vim being the most common and highly regarded—start playing

Xiii

with one. You'll also want to be familiar with the basics of using gec, gdb, make, and
so on. Plenty of other books on tools and practices for Linux programming are out
there; the bibliography at the end of this book lists several useful references.

I’ve made few assumptions about the reader’s knowledge of Unix or Linux system
programming. This book will start from the ground up, beginning with the basics,
and winding its way up to the most advanced interfaces and optimization tricks.
Readers of all levels, I hope, will find this work worthwhile and learn something
new. In the course of writing the book, I certainly did.

Nor do I make assumptions about the persuasion or motivation of the reader.
Engineers wishing to program (better) at a low level are obviously targeted, but
higher-level programmers looking for a stronger standing on the foundations on
which they rest will also find a lot to interest them. Simply curious hackers are also
welcome, for this book should satiate their hunger, too. Whatever readers want and
need, this book should cast a net wide enough—as least as far as Linux system pro-
gramming is concerned—to satisfy them.

Regardless of your motives, above all else, have fun.

Contents of This Book

This book is broken into 10 chapters, an appendix, and a bibliography.

Chapter 1, Introduction and Essential Concepts
This chapter serves as an introduction, providing an overview of Linux, system
programming, the kernel, the C library, and the C compiler. Even advanced
users should visit this chapter—trust me.

Chapter 2, File I/O
This chapter introduces files, the most important abstraction in the Unix envi-
ronment, and file I/O, the basis of the Linux programming mode. This chapter
covers reading from and writing to files, along with other basic file I/O operations.
The chapter culminates with a discussion on how the Linux kernel implements and
manages files.

Chapter 3, Buffered I/O
This chapter discusses an issue with the basic file I/O interfaces—buffer size
management—and introduces buffered I/O in general, and standard 1/O in par-
ticular, as solutions.

Chapter 4, Advanced File I/0
This chapter completes the I/O troika with a treatment on advanced 1/O inter-
faces, memory mappings, and optimization techniques. The chapter is capped with
a discussion on avoiding seeks, and the role of the Linux kernel’s I/O scheduler.

xiv | Preface

Chapter 5, Process Management
This chapter introduces Unix’s second most important abstraction, the process,
and the family of system calls for basic process management, including the ven-

erable fork.

Chapter 6, Advanced Process Management
This chapter continues the treatment with a discussion of advanced process

management, including real-time processes.

Chapter 7, File and Directory Management
This chapter discusses creating, moving, copying, deleting, and otherwise man-
aging files and directories.

Chapter 8, Memory Management
This chapter covers memory management. It begins by introducing Unix con-
cepts of memory, such as the process address space and the page, and continues
with a discussion of the interfaces for obtaining memory from and returning
memory to the kernel. The chapter concludes with a treatment on advanced
memory-related interfaces.

Chapter 9, Signals
This chapter covers signals. It begins with a discussion of signals and their role
on a Unix system. It then covers signal interfaces, starting with the basic, and
concluding with the advanced.

Chapter 10, Time
This chapter discusses time, sleeping, and clock management. It covers the basic
interfaces up through POSIX clocks and high-resolution timers.

Appendix, GCC Extensions to the C Language
The Appendix reviews many of the optimizations provided by gcc and GNU C,
such as attributes for marking a function constant, pure, and inline.

The book concludes with a bibliography of recommended reading, listing both use-
ful supplements to this work, and books that address prerequisite topics not covered
herein.

Versions Covered in This Book

The Linux system interface is definable as the application binary interface and appli-
cation programming interface provided by the triplet of the Linux kernel (the heart
of the operating system), the GNU C library (glibc), and the GNU C Compiler (gcc—
now formally called the GNU Compiler Collection, but we are concerned only with
C). This book covers the system interface defined by Linux kernel version 2.6.22,
glibc version 2.5, and gec version 4.2. Interfaces in this book should be backward
compatible with older versions (excluding new interfaces), and forward compatible
to newer versions.

Preface | xv

If any evolving operating system is a moving target, Linux is a rabid cheetah.
Progress is measured in days, not years, and frequent releases of the kernel and other
components constantly morph the playing field. No book can hope to capture such a
dynamic beast in a timeless fashion.

Nonetheless, the programming environment defined by system programming is set in
stone. Kernel developers go to great pains not to break system calls, the glibc devel-
opers highly value forward and backward compatibility, and the Linux toolchain
generates compatible code across versions (particularly for the C language). Conse-
quently, while Linux may be constantly on the go, Linux system programming
remains stable, and a book based on a snapshot of the system, especially at this point
in Linux’s development, has immense staying power. What [am trying to say is sim-
ple: don’t worry about system interfaces changing, and buy this book!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used for emphasis, new terms, URLSs, foreign phrases, Unix commands and util-
ities, filenames, directory names, and pathnames.

Constant width
Indicates header files, variables, attributes, functions, types, parameters, objects,
macros, and other programming COnstructs.

Constant width italic
Indicates text (for example, a pathname component) to be replaced with a user-
supplied value.
T A

o This icon signifies a tip, suggestion, or general note.
A
)
X

Most of the code in this book is in the form of brief, but usable, code snippets. They
look like this:

while (1) {
int ret;

ret = fork ();
if (ret == -1)
perror ("fork");
}
Great pains have been taken to provide code snippets that are concise but usable. No
special header files, full of crazy macros and illegible shortcuts, are required. Instead
of building a few gigantic programs, this book is filled with many simple examples.

xwi | Preface

As the examples are descriptive and fully usable, yet small and clear, [hope they will
provide a useful tutorial on the first read, and remain a good reference on subse-
quent passes.

Nearly all of the examples in this book are self-contained. This means you can easily
copy them into your text editor, and put them to actual use. Unless otherwise men-
tioned, all of the code snippets should build without any special compiler flags. (In a
few cases, you need to link with a special library.) 1 recommend the following com-
mand to compile a source file:

$ gee -Wall -Wextra -02 -g -o snippet snippet.c

This compiles the source file snippet.c into the executable binary snippet, enabling
many warning checks, significant but sane optimizations, and debugging. The code
in this book should compile using this command without errors or warnings—
although of course, you might have to build a skeleton program around the snippet
first. .

When a section introduces a new function, it is in the usual Unix rnanpage format
with a special emphasized font, which looks like this:

#include <fcntl.h>

int posix_fadvise (int fd, off t pos, off_t len, int advice);

The required headers, and any needed definitions, are at the top, followed by a full
prototype of the call.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
Safa favorite technology book, that means the book is available online

Baoks °"""= through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you are reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

Preface | xvii

example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate attribution. An attribution usually includes the title, author, pub-

lisher, and ISBN. For example: “Linux System Programming by Robert Love. Copy-
right 2007 O’Reilly Media, Inc., 978-0-596-00958-8.”

If you believe that your use of code examples falls outside of fair use or the permis-
sion given above, feel free to contact us at permissions@oretlly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addl-
tional information. You can access this page at this address:
http:/fwww.oreilly.com/catalog/9780596009588/

To comment or ask technical questions about this book, you can send an email to
the following address:

bookquestions@oreilly.com
For more information about our books, conferences, Resource Centers, and the
O'Reilly Network, see our web site at this address:

http:/fwww.oreilly.com

Acknowledgments

Many hearts and minds contributed to the completion of this manuscript. While no
list would be complete, it is my sincere pleasure to acknowledge the assistance and
friendship of individuals who provided encouragement, knowledge, and support
along the way.

Andy Oram is a phenomenal editor and human being. This effort would have been
impossible without his hard work. A rare breed, Andy couples deep technical knowl-
edge with a poetic command of the English language.

wiii | Preface

Brian Jepson served brilliantly as editor for a period, and his sterling efforts continue
to reverberate throughout this work as well.

This book was blessed with phenomenal technical reviewers, true masters of their
craft, without whom this work would pale in comparison to the final product you
now read. The technical reviewers were Robert Day, Jim Lieb, Chris Rivera, Joey
Shaw, and Alain Williams. Despite their toils, any errors remain my own.

Rachel Head performed flawlessly as copyeditor. In her aftermath, red ink decorated
my written word—readers will certainly appreciate her corrections.

For numerous reasons, thanks and respect to Paul Amici, Mikey Babbitt, Keith Bar-
bag, Jacob Berkman, Dave Camp, Chris DiBona, Larry Ewing, Nat Friedman, Albert
Gator, Dustin Hall, Joyce Hawkins, Miguel de Icaza, Jimmy Krehl, Greg Kroah-
Hartman, Doris Love, Jonathan Love, Linda Love, Tim O’Reilly, Aaron Matthews,
John McCain, Randy O’Dowd, Salvatore Ribaudo and family, Chris Rivera, Joey
Shaw, Sarah Stewart, Peter Teichman, Linus Torvalds, Jon Trowbridge, Jeremy Van-
Doren and family, Luis Villa, Steve Weisberg and family, and Helen Whisnant.

Final thanks to my parents, Bob and Elaine.

—Robert Love
Boston

Preface | xix

About the Author

Robert Love has been a Linux user and hacker since the early days. He is active in—
and passionate about—the Linux kernel and GNOME desktop communities. His
recent contributions to the Linux kernel include work on the kernel event layer and
inotify. GNOME-related contributions include Beagle, GNOME Volume Manager,
NetworkManager, and Project Utopia. Currently, Robert works in the Open Source
Program Office at Google.

As an author, Robert is responsible for Linux Kernel Development (Novell Press),
now in its second edition. He is also a coauthor of the fifth edition of O’Reilly’s
Linux in a Nutshell. A contributing editor for Linux Journal, Robert has written many
articles and has been invited to speak around the world on Linux.

Robert graduated from the University of Florida with a B.A. in mathematics and a
B.S. in computer science. Hailing from south Florida, he now calls Boston home.

Colophon

The image on the cover of Linux System Programming is a man in a flying machine.
Well before the Wright brothers achieved their first controlled heavier-than-air flight
in 1903, people around the world attempted to fly by simple and elaborate machines.
In the second or third century, Zhuge Liang of China reportedly flew in a Kongming
lantern, the first hot air balloon. Around the fifth or sixth centuries, many Chinese
people purportedly attached themselves to large kites to fly through the air.

It is also said that the Chinese created spinning toys that were early versions of heli-
copters, the designs of which may have inspired Leonardo da Vinci in his initial
attempts at a solution to human flight. da Vinci also studied birds and designed para-
chutes, and in 1845, he designed an ornithopter, a wing-flapping machine meant to
carry humans through the air. Though he never built it, the ornithopter’s birdlike
structure influenced the design of flying machines throughout the centuries.

The flying machine depicted on the cover is more elaborate than James Means’
model soaring machine of 1893, which had no propellers. Means later printed an
instruction manual for his soaring machine, which in part states that “the summit of
Mt. Willard, near the Crawford House, N.H., will be found an excellent place” to
experiment with the machines.

But such experimentation was often dangerous. In the late nineteenth century, Otto
Lilienthal built monoplanes, biplanes, and gliders. He was the first to show that
control of human flight was within reach, and he gained the nickname “father of
aerial testing,” as he conducted more than 2,000 glider flights, sometimes traveling
more than a thousand feet. He died in 1896 after breaking his spine during a crash
landing,

Flying machines are also known as mechanical birds and airships, and are occasion-
ally called by more colorful names such as the Artificial Albatross. Enthusiasm for
flying machines remains high, as aeronautical buffs still build early flying machines
today.

The cover image and chapter opening graphics are from the Dover Pictorial Archive.

The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono

Condensed.

Foreword
Preface

1.

Introduction and Essential Concepts

System Programming

APIs and ABIs

Standards

Concepts of Linux Programming

Getting Started with Syster¥ Programming

Filel/O

Opening Files
Reading via read()
Writing with write()
Synchronized 1/0
Direct I/O

Closing Files
Seeking with Iseek()
Positional Reads and Writes
Truncating Files
Multiplexed 1/0
Kernel Internals
Conclusion

Table of Contents

vii

