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Preface

The extended abstracts and papers in this volume were presented at the Third
International Syposium on Operations Research and its Applications (ISORA’98),
on August 20 - 22, 1998, in Kunming, China. The conference was sponsored by
the Asian-Pacific Operations Research Center in cooperation with Institute of
Applied Mathematics, Chinese Academy of Sciences and Operations Research
Society of China.

Fifty papers in this volume cover quite a few aspects of operations research
methods and its various applicatins including scheduling problem, parallel and
distributed computing, combinatorial optimization, decision and management,
simulation method, econimic and financial problems, mathematical program-
ming, queueing theory, fuzzy method. The authors of these papers come from
the following countries and regions: Australia, Canada, China (including Hong
Kong and Taiwan), Egypt, France, Germany, Greece, Japan, Korea, United
Kingdom and United States of America.

In the end, we wish to thank all who have made this conference possible:
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o The program committee members consisting of Y. Gang (co-chair, University
of Texas at Austin, USA), S. J. Park, (Korea Advanced Institute of Science &
Technology, Korea), P. M. Pardalos (co-chair, University of Florida, USA), G. H.
Young (The Chinese University of Hong Kong, Hong Kong), J.-Z. Zhang (City
University of Hong Kong, Hong Kong). Our special thank goes to Prof. G. H.
Young who spent lots of time on organizing two special sessions for ISORA’98
and making home page for ISORA’98.
e The organizing committee members consisting of Yu-Di Cai, Lin Cheng, Yaji
Guan, Xiao-Dong Hu, Jie Hu, Gang Li, Yong Li, Lei Wang and Jin-Rong W (all
from Institute of Applied Mathematics, Chinese Academy of Sciences, China).
¢ The National Natural Science Foundation of China for their financial support.
e The Beijing World Publishing Cooperation for publishing this volume, and
Ms. Rong Gao and Ms. Wei Wang for their editoral work.
e The Palace Hotel in Kunming, China for providing lecture rooms for the
conference.
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Xiang-Sun Zhang (Chair of the Symposium)
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Memory-restricted parallel multi-join evaluation
(Extended abstract)

Richard Wong Hong Shen Rodney Topor

School of Computing and Information Technology
Griffith University
Nathan, QId 4111, Australia
{R.Wong,H.Shen,R.Topor}@cit.gu.edu.au

1 Introduction

There is a long history of research on efficient evaluation of join operations in re-
lational database systems in both sequential and parallel environments. Recently
researchers have extended this work to efficient parallel evaluation of multi-join
expressions Ry >a...0d Ry of relations Ry, ..., Rk [1, 2, 3, 4]. In particular, they
have studied how such expressions can be evaluated in the minimum total time
on different parallel machine models.

The existing algorithms have used either intra-operation parallelism, inter-
operation parallelism, or a combination of both. In intra-operation parallelism,
each join operation is executed using all available processors in parallel. Succes-
" sive joins are executed sequentially. In inter-operation parallelism, one or more
of the available processors are allocated to each join operation, and different join
operations are evaluated in parallel. A special case of inter-operation parallelism
is pipeline parallelism, in which the output of each join operation is sent directly
as input to another join operation, without being stored on disk first.

An experimental study demonstrated that intra-operation parallelism can
achieve a linear speedup for a small number of processors but this cannot be
extrapolated to a large number of processors [5].

Research by Krishnamurty [6] remarked that the restriction to linear trees
may not be a good choice for parallel system. However, the space of possible
join trees is very large if restriction to linear tree is dropped [7]. In this paper,
we analyse and compare the performance of two extreme forms of pipeline par-
allelism, assuming a limited amount of main memory available on a distributed
shared memory computer. We show how to construct an intermediate form of
pipeline parallelism that fully exploits the available main memory to achieve
better performance than either extreme form alone.

The remainder of the paper is organized as follows. Section 2 briefly de-
scribes the pipelining parallelism on parallel computer. Section 3 describes the
cost analysis and the detail algorithms. Section 4 presents the comparisons of
the algorithm, and Section 5 summarises the results and suggests future work.



2 Pipelining parallelism

In [8, 9] it is shown how special single-join main-memory algorithms can be used
to enhance the effective parallelism from pipelining. These single-join pipelining
algorithms aim at producing output as early as possible, so that a consumer
of the result can start its operation. In particular, [8, 10] proposes a pipelining
hash-join algorithm for joining two sets. Compared to the simple hash-join, the
pipelining algorithm can produce result tuples earlier during the join process at
the cost of using more memory to store a second hash-table. Using this algorithm,
pipelining along both operands of the join is possible.

The two extreme forms of pipeline parallelism that we consider are linear
pipeline parallelism on linear trees and full pipeline parallelism on bushy trees.
Our cost mode] assumes that, for each join operation, the size of the output
relation is larger than that of either of the input relations.

2.1 Linear pipeline parallelism

As depicted in Figure 1, linear pipeline parallelism (linear pipelining) is appli-
cable to left linear expression trees such as (...({R; b4 R2) 5a R3) ba ... ba Ry).
Several processors may be allocated to each join operation at an abstract “node”.
The first node (R; >4 R3) has two relations R; and R, as its operands. Each
other node has only one relation as its right operand. To evaluate the linear
expression tree by linear pipeline execution, all join operators perform the hash
joins in parallel. The hash join can be divided into two phases. In the first phase,
which is called hash phase, all join operators build separate hash tables for their
second operand in parallel. In the second phase, the join phase, each join opera-
tor compares each tuple of its first operand in turn with entries in its hash table,
and sends each tuple of its result to its parent node. The result will become part
of the parent node operand. At last, the root join operator stores its result on
its local disk.

Since this is main-memory computation, the only disk I/O required is the
time to read the input tuples from and to write the result to local disk. In
the analysis, we assume that all communication between nodes can be done in
parallel, any nodes in the tree can either receive or send data only. For analysis
propose, we assume that all input set are of the same size N, and the join
selectivity for each join is the same js. We define Ty;,« as the time to read/write
a tuple from/to disk. Tiomp 1s the time to perform a comparison operation.
Teomm is the time to transfer a tuple from one processor to other.

The following two types of delay incur in the pipelined parallelism

— waiting for the first input: at any non-leaf node an operation has to wait
for the first input to arrive. The size of this delay depends on the shape of
the query tree, the number of joins in the pipeline and the size of the join
operands.

— delay for input/output: at any non-leaf node an operation has to wait for the
input tuples or output tuples to send. The size of this delay depends on the
workload of the nodes in the pipeline tree.
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Fig.1. An example of linear pipelining method

In the best case of minimum time on waiting for the first input, there is no
delay for input/output. The first tuple requires time (2* Teomp + Tcomm ) * (k —2)
to arrive at the root node. It also requires timé (Teomp + Tuisk) ¥ N* * jsF~!
to join and write the result into local disk. Thus, the total time required is
(Q*Tcomp + Teomm) * (k= 2) +( comp+Tduk) *Nk*]sk L

In the worst case of maximum time on waiting for the first input, and maxi-

mum delay in waiting for input/output. The first tuple arrive at the root node
k—2

requires the time Z Nixjs' (Teomp + Tcomm)- Since each join operator can ei-
i=1
ther send or receive tuples at any time. For each set of tuple (group by the first
attribute r;), it requires the time Nk=2, 785" HTeomm) + NE=1y jsk—1 (Teomp +
k-3
Taisi). Hence, the total time required is Z N x js‘(Tcomp + Teomm) + NE=1,
i=1
s —2Tcomm + Nk * jsk-l (Tcomp + Tdisk)-
Memory requirement of this algorithm is minimal and equal to the summed
size of input sets. The total memory required for linear pipeline parallelism is
(k—1)* N.

2.2  Full pipeline parallelism

Full plpelme parallelism (full pipelining) is applicable to “bushy” or balanced
expression trees such as ((R; 0@ Rp) b (i.. 0@ (Ra-1 b4 Ry))). Again, several
processors may be allocated to each operation node. Evaluation is performed
by linear pipelining along all left linear sub-trees in parallel. Because the right
operand of all internal operation nodes in the tree is the output of another join
operation, each such node must use the double-hashing join algorithm. Again,



each node sends each tuple of its result to its parent to become part of one of
the parent’s operands. The root node stores its result on its disk. (Figure 2.)
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Fig. 2. An example of full pipelining method

The analysis following assume a balance bushy tree and P = k — 1. In the
best case of minimum time on waiting for the first input, there is no delay for
input/output. The first tuple required the time (2 * Teomp + Teomm ) * (logk — 1)
to arrives the root node and it required the time (Teomp + Taisk) * Nk 5 jsk-1
to join and write the result into local disk. Thus, the total time required is
(2 * Tcomp + Tcomm) (logk - 1) + ( comp + Tdtsk) * N¥ « ]sk L

In the worst case of maximum time on waiting for the ﬁljst input, and
maximum delay in waiting for input/output. The first tuple required the time

logk-1
(Teomp + Teomm ) Z 2w js? Tl 1) to arrives the root node. Since each join

i=1
operator can either send or receive tuples at any time, the algorithm required

the maximum time 2 * (Tzomp + Tcomm)NTo‘* ' *js 2'0” -y (Teomp + Taisk) *
log k—2

N2'°“ is2°*" -1 The total time required is ( Z z'z"*jsz"l (Teomp +Teomm)+
i=1
2% N¥ xjss-1) 42 (Teomp + Taisk)N¥ # js*=?
Full pipelining requires less communication time because the communication
paths are shorter.- However, memory requirement is greater because two hash
tables (one hash table for each operand) must be stored at each internal node.



To join k sets with a common key, the memory required for a full pipeline tree

(balance) is 2N%js5-1 + AN%js¥=1 4 . 4+ kN.

3 Constructing intermediate expression trees

The above discussion indicates that linear expression trees (with linear pipelin-
ing) have minimal memory requirement but longer total running time. Bushy
expression trees (with full pipelining) have greater memory requirement but
smaller running times. Evaluation of bushy trees may not be possible with lim-
ited memory.

We show how to construct an expression tree that has minimal computation
time subject to the constraint that evaluation can be performed in the available
memory. In other words, we aim to achieve maximum parallelism by making
maximum use of the available memory.

In general, solving this problem optimally is computationally intractable. A
simple two-phase approach is first to find the tree of least total cost and then to
find the best evaluation strategy for this tree. Our approach starts with a least
cost (linear) tree suitable for linear pipelining. It then iteratively transforms this
tree to one that meets our requirements. Each step of the transformation selects
the most expensive join operations in the current tree, estimates their memory
requirements, and partitions the tree accordingly. The process stops when no
more partitioning can be performed.

Our cost models in Section 2 can be used to estimate the computation time
and memory requirement of the result tree, evaluated using full pipelining.

We can calculate the total computation time by summing up the computation
cost for each join operator. A more expensive computation cost indicates a longer
computation time. Comparing the two methods of pipelining, linear pipelining
execution requires more computation time than full pipelining execution.

All communication between any nodes is processed in parallel. The total
communication time can be sum by summing up the maximum communication
time in each stage. Full pipelining requires less communication time, this is
because it reduces the size of intermediate result by splitting the query tree into
two smaller sub-trees. When computing the Cartesian Product, full pipelining
can reduce up to N times communication time required by linear pipelining.

As for memory usage, linear pipelining required less memory. In Linear
pipelining, each join operator stores the hash table of a relation in memory,
whereas full pipelining stores a hash-table for each input (two hash-tables for
each join operator).

We now provide two algorithms which transform a linear pipeline tree into
parallel pipeline tree on memory restriction M. The difference between these
algorithms are the computation time required to generate the resulting tree and
the total running time to execute the resulting tree. The first algorithm can
produce a least cost tree with a longer computation time. The second algorithm
can produce an almost-least cost tree with a shorter computation time.



3.1 The Global Partition Algorithm

The Global Partition algorithm constructs an expression tree that has minimal
computation time subject to the constraint that evaluation can be performed
within the available memory.

In generate, this algorithm repeated inserts a double-hash join operator into
each of its linear pipeline sub-trees. After the insertion, the total memory re-
quired to evaluate the resulting tree remains less than M. Also, the total time
to execute the resulting tree is minimum. We say that a linear sub-tree of T' is
full, if adding any node of T into it will destroy its linear structure.
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Fig. 3. An example of Global Partition algorithm

Procedure Global Partition
1. Let L contain all full linear sub-trees from the query tree 7.
9. For all I € L, find a global partition that divide each [; into 3 parts (linear
sub-trees) I}, {7 and I? and satisfies the following conditions :
— size(l})=size(i?).
— size(I?) is minimum over all possible linear sub-trees.
— the memory required for evaluate the new tree is less than M.

3." Repeat above with the new tree until the memory required to evaluate T is
larger than M.

Obviously, optimal solution is NP-hard because we have to examine all pos-
_ sible partitions of the linear sub-trees. An effective way to find a global partition
in polynomial time is repeatedly dividing each linear sub-tree into two equal
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parts until the memory required is less than M. However, this can only obtain
an approximation solution.

In Figure 3, an example of Global Partition is given. In (a), the algorithm
selects all full linear sub-trees from the given query tree T'. In (b), it divide each
sub-tree into three parts, where the size(l}) = size(i?) and size(l}) is minimum.
Also, the memory required for the new double hash-join operator is smaller than
the available memory. The result has been showed in (c).

3.2 Single Sub-Tree Partition Algorithm

Similar to Global Partitiont algorithm, the Single Sub-tree Partition algorithm
constructs an expression tree that has almost minimal computation time subject
to the constraint that evaluation can be performed in the available memory.
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Fig. 4. An example of Single Sub-Tree Partition algorithm

Procedure Single Sub-Tree_Partition

1. Let L contain all full linear sub-trees from the query tree T.

2. Select the maximum cost linear sub-tree ! from L.

3. Divide [ into three parts !, {* and {3 and satisfies the following conditions :
— size(l?)=size(I?) '
— size(I®) is minimum.
— the memory required for the new tree is less than M.

4. Repeat the above with the new tree until the memory required to evaluate

T is bigger than M.



In Figure 4, we give an example of Single Sub-tree Partition algorithm with
in the available memory. In (a), the algorithm selects the maximum cost linear
sub-tree from the given query tree. In (b), it divides the sub-tree into three parts
(11, 12, 13), where size(l}) = size(I?) and size(I?) is smallest. Also, the memory
required for the new join operator is less than the available memory. The result
has been shown in (c¢) and the process continues until no more double-hash join
operator can be insert into the query tree. '

4 Comparisons

The new intermediate query trees generated from the algorithms above require
less communication time than the original linear query tree. Moreover, they use
a smaller number of levels {depth), which will reduce the waiting for the first
input delay. In the linear tree, all join operators are connected in a single linear
path. In case if some join operators are busy while others are waiting for data
input/output from thier neighbouring join operators on the path, data pipelining
in the whole query tree will be halted. In contrast, our new intermediate query
tree partitions the join operators into a number of paths. If some paths halt due
to the delay of input/output, other paths will remain to work independently. In
this way, parallelism in the whole query tree is increased. Of course, the new
intermediate query tree requires more memory when the intermediate results
are large.

5 Conclusions

In this paper, we investigated one aspect of parallel relational-query evaluation.
Specifically, we have analysed the total running time and memory usage for
linear pipelining and full pipelining algorithm. Also, we have proposed two effi-
cient algorithms to improve the total running time for linear pipelining by fully
utilising the available memory.

Becasue it is hard to find a precise cost model with the presence of pipelining
delay, it is difficult to accurately analyze the performance of the proposed query
trees. It is therefore desirable to have an actual implementation of these query
trees on a suitable parallel machine, and to obtain a more detailed performance
analyses and comparisons with the original linear query tree, especially on the
average case.
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Dynamic Time-Based Scheduling in a Hard Real-Time
System *

Seonho Choi! Sameh El-Sharakwy? Bao Trinh? Ashok K. Agrawala?

! Department of Computer Science, Bowie State University, Bowie, MD 20715, USA
2 Institute for Advanced Computer Studies, Department of Computer Sicence,
University of Maryland, College Park, MD 20742

Abstract. In traditional time-based scheduling schemes for real-time
systems time line is explicitly managed to obtain a feasible schedule that
satisfies all timing constraints. In the schedule the task attributes, such
as task start time, are statically decided off-line. However, for dynamic
real-time systems, in which new tasks may arrive during the operation,
or tasks may have relative timing constraints based on information only
known at run-time, such static schemes may lack the ability to accommo-
date dynamic changes. In this paper we present a new scheduling scheme
called dynamic time-based scheduling that has been developed for Maruts
hard real-time system. In the scheme any attributes of task instances in
the schedule may be represented as functions parameterized with infor-
mation available at task dispatching time. This dynamic scheme supports
flexible resource management at system operation time.

To show its applicability we present a solution approach, based on dy-
namic time-based scheduling scheme, for dispatching tasks with relative
timing constraints. The relative constraints may be defined across the
boundary of two consecutive scheduling windows as well as within one
scheduling window. We present the solution approach with which we
are not only able to test the schedulability of a task set, but also able
to obtain maximum slack time by postponing static task executions at
run-time.

1 Introduction

Real-time computer systems are characterized by the existence of timing con-
straints on computations they carry out. The timing constraints are statically
determined at pre-runtime from the characteristics of physical systems they in-
teract with. In hard real-time systems, a timing failure is considered catastrophic
and a guarantee should be given prior to execution that every timing constraint
will be satisfied. Examples are found in application domains such as avionics,
process control, automated manufacturing, robotics, etc.

* This work is supported in part by ONR and ARPA under contract N66001-95-
C-8619 to the Computer Science Department at the University of Maryland. The
views, opinions, and/or findings contained in this report are those of the author(s)
and should not be interpreted as representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency, ONR or the U.S. Government.
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