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Preface

This volume studies, from several viewpoints, the representation theory of finite
groups which happen to be the Galois groups of finite extensions of fields. In
particular, it is concerned with the construction of invariants of such Galois
representations.

At the mention of invariants (or characteristic classes, in the topological
terminology), an algebraic topologist would at once think of the more-than-
adequate theory of Stiefel-Whitney and Chern classes and so might consider
the matter closed. True, the methods of algebraic topology are designed for,
and have been largely successful in, the process of constructing invariants.
However, topology generally presents the seeker with invariants of Galois
representations which are natural for all homomorphisms of such groups, which
is much more than one insists upon when studying these representations qua
Galois representations. It was this novelty which aroused my interest in this
subject and, within this volume, I hope to give some bona fide examples in
which a modicum of algebraic topology is extremely useful—perhaps even
essential.

The first four chapters of this book are concerned with characteristic classes
(of Galois representations) whose values lie in mod 2 Galois cohomology. The
topic treated is the relationship, first discovered by Jean-Pierre Serre, between
algebraic and topological characteristic classes of a Galois representation. That
is, as explained in Chapter 2, an orthogonal Galois representation may be
considered as giving rise to a bilinear form. The Hasse-Witt classes of this
bilinear form turn out to be related to the Stiefel-Whitney classes of the
representation. In Chapters 3 and 4 we derive Serre’s formula and generalizations
of it due to A. Frohlich and B. Kahn. These results we prove by methods that
differ from the original ones and which require a modest amount of topology.
For example, we develop the Koslowski transfer ab initio, in Chapter 4, in the
category of topological spaces. In this setting the process is simpler and more
general than the algebraic manner in which Bruno Kahn rediscovered it.

In preparation for later applications, Chapter 1 gives a brief introduction to
the abelian cohomology of groups, and Chapter 2 does the same for the
nonabelian theory. In those chapters several examples of cohomology rings are
calculated. In particular, it is at this point that we collect all the specific
cohomological data about dihedral and quaternion groups which will be useful
later.

vii



viii Preface

Chapters 6 and 7 are concerned with the construction of invariants of Galois
representations in local class field theory. These chapters culminate in a new,
essentially local, construction of the local root numbers, which give a local/global
factorization of the Artin root number. In addition, as a necessary preliminary
step, we construct the orthogonal local root numbers in Chapter 6, section 2,
by a new, ad hoc method, involving the Witt group of nonsingular, symmetric,
bilinear forms. This feature provides a very satisfactory point of contact between
the material of Chapter 3 and that of Chapter 7.

Chapter 6 introduces the canonical form, which I have christened Explicit
Brauer Induction, of Brauer’s induction theorem. This involves more serious
topology, in the form of the Lefschetz Fixed-Point Theorem. This chapter also
derives a natural presentation for the representation ring of a finite group in a
form which is suitable for the procedure of promoting invariants of abelian
Galois representations to give invariants of arbitrary Galois representations.
The problem of finding such a presentation is a very natural one and was posed
by Jean-Pierre Serre. The construction of the local root number is an excellent
example of this procedure in action, and I imagine that the formal nature of
the argument will eventually render the technique useful in other contexts.

Finally, I will describe the role of Chapter 5. This chapter treats hard core
stable homotopy theory that is not essential to the understanding of the later
chapters. If the details are too unfamiliar, I recommend merely the reading of
the statements of the main results and the scrutiny of the numerous attendant
examples.

In Chapter 5 a result is proved which concerns the stable homotopy classes
of maps between classifying spaces of groups. This result leads inexorably to
the discovery of the Explicit Brauer Induction formulae, at least in the
I(G)-adically completed representation ring. All this is described in Chapter 5,
with many illustrative examples, and in Chapter 6, section 1. Therefore,
Chapter 5 is an example of a result in stable homotopy theory which leads the
way to a serious, new result in representation theory and thence to a serious
application in number theory. I have included Chapter 5 to emphasize the
novelty of this transpiration.

This volume began as lecture notes for a graduate course I gave at the
University of Western Ontario during 1985 to 1986. The lecture notes contained
Chapters 1-5 in essentially their current form and a far less satisfactory version
of Chapters 6-7, in which the representation rings had to be completed and all
invariants considered had to be continuous.

Throughout the book I have tried to give sufficient background on the
topological prerequisites so that the energetic reader could pursue the details
further. On this basis I believe that the reader who has experienced a graduate
course on introductory algebraic topology will find this book accessible. On
the algebraic and number-theoretic side, I have tried to be more complete, partly
because of the constitution of my original audience.

I am very grateful to the University of Western Ontario for granting me a
sabbatical year to finish this book. I was fortunate to enjoy the hospitality of



Preface ix

the Centre de Recherches Mathématiques, Université de Montréal, and of the
Mathematical Sciences Research Institute, Berkeley, during the final stages. I
have attempted to embellish the start of each chapter with a quotation of
idiosyncratic aptness, in that regard I am very grateful to Nancy Z. Tausky for
providing me with the translation of the original lines of Belshazzar to Daniel
(from “Cleanness” 1633-1640), and likewise, I would like to thank Mikael
Runsten and Udo Zander for the original words of the poem by F. M. Franzén.
Finally, I am deeply indebted to Catharine Leggett for typing the manuscript.

Victor Snaith

Hamilton, Ontario
April 1988
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Chapter One

Abelian Cohomology of Groups

It’s like a book, this bloomin® world.

Which you can read and care for just so long,

But presently you feel that you will die

Unless you get the page you're readin’ done,

An’ turn another—likely not so good;

But what you're after is to turn 'em all.

—RUDYARD KIPLING,

“Sestina of the Tramp-Royal” (1896)

In this chapter we first review the basic definitions of group cohomology with
abelian coefficients, both continuous and discrete. Then we consider explicit
formulae in low dimensions for applications such as products and the transfer
(or corestriction) map. We introduce the usual basic concepts, for example, the
long exact sequence and the homology/cohomology relationship. Our primary
goal is to come away from this chapter with a few specific cohomology rings
at our disposal—as well as transfer techniques such as the double coset formula.
Transfer techniques are not only technically useful to us at this point; we will
need, to depend on them when, in Chapter 5, we encounter the double coset formula
in stable homotopy theory.

After we have computed the cohomology rings of the cyclic groups, the
dihedral group of order eight (with mod 2 coefficients) and (additively) the
cohomology of the generalized quaternion groups, certain acts of faith will be
required. These take the form of belief in the Stiefel-Whitney classes, Chern
classes, and in the properties of spectral sequences. I have taken the view that
faith knows no limits! Accordingly, with the briefest review of such things we are
able to conclude this chapter with the computation of the mod 2 cohomology
rings of dihedral and generalized quaternion groups and the integral cohomology
ring of the dihedral group of order eight.
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