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NOTATION

Unless otherwise stated, the following notation will be adopted:

a=b means a is approximately equal to b

o

a:=b means a is defined to be b or a denotes b

R, C = field of real and complex numbers, respectively

€, ={zeC | Rez2 0 }, the closed right-half complex plane
For z € €

2|
[z, argz := argument of 2

modulus ( or magnitude ) of z

'

Rez,Img := real, imaginary paft of z, respectively
For k ¢« R
Ik = square root of k also written as kl/z ; unless otherwise stated,

the valuc is taken to be positive

Ek = k dimensional Euclidean space
max .= the maxmium with respect to k
k

R(s),C(s):= field of rational functions in s with coefficients in R, €

0(31) := a quantity of order st ( or less )

Let F be any one of R, €, R(s) or C(s), then :

F’xl .= set of mx¢ matrices with elements in F
F-x‘(s) .= met of mxt matrices with elements in F(s)
o = vector space of nx1 column vectors with elements in F, over an

appropriate field

Let M € an¢ where F is either R or C, then :

it

m, (i,J)th entry of M ; we also write M = ( 5 )
{ gi } .= set of eigenvalues (spectrum) of M ; also known as characteristic
values or gains ; generally, g, are arranged in descending order

of their magnitude
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{o,} 1= set of singular values of M ; also known as principal gains ;

generally, o, are arranged in descending order of their magnitude

o (M) := maximum singular value of M
a(M) = minimum singular value of M
Mt 1= transpose of M
M_1 := inverse of M
M* := conjugate transpose of M
M| 1= ( xij ) where xiJ = |mijl
argM 1= ( Xij ) where xij = arg mij
t = 2,1/2
M "F = (2 X im . |7) , the Frobenius norm of M
PR & |
J=1 i=1
WM "2 1= o(M), spectral norm or maximum singular value of M
1 i= mam unit matrix

Let u € Fl where F is either R or €, then

o L .
hu H2 = ( u*-u )i/z = (2 Iuijiz)l/z, the Buclidean vector norm of u
i=1
ut = transpose of the vector u
diag{di}L1 := nxn diagonal matrix with dl""’dn along the diagonal ; also

. written as diag{di,...,dn} or diag{di}
Let A € Rnxn' B € Rnxl’ C e Rnxn’ D e R-XI and s be the frequency variable
(s e€cC), then:
G(s) 1= C(sIn - A)-iB 4+ D , the plant open-loop gain (transfer function)
matrix

Also, let g be the gain variable ( g €« € ) and £ = m, then:

sS(g) B(gI- - n)"c + A , the closed-loop frequency matrix
Let 2 € € and G(a) « R(8)™¢, then:

ASMP[G(s),R] := number of Smith-McMillan poles of G(s) in R

Let ¢ be a ( finite number of ) closed curve(s) in €, then:

AE(¢,a) := number of encirclements of ¢ around the point a ; anti-clockwise

encirclements are taken as positive
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Units:

m meter

N newton

rad radian

s second

rev revolution ( 2-n radiens )
min minute ( 60 seconds )

kN kilonewton (1000 N)
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CHAPTER ONE
INTRODUCTION

The theory and codified practice of automatic control is an organised
body of sharesble knowledge, and the importance of developing appropriate
interactive computing enviroments lies largely in meking such a specialiced
body of knowledge easily usable and easily accessible, and therefore easily
shareable. Expert and knowledge-based systems have a key role to play in the
creation of such environments. The work presented here is concerned with the
investigation of expert system techniques for the design of linear
multivarisble feedback control systems. It is important that the procedures
used by such an expert system to manipulate models and their attributes are
formulated in terms of a set of individual functions which a designer can
cause to be executed on the computer. Only in such circumstances will one be
able to formulate any high-level machine-based procedure which would "explain"
its actions. For the same réason the procedures used by the machine must be
coherent with the principles in terms of which the man thinks about the tasks
which are being carried out. In order to achieve these key attributes of
referential transparency and coherence, the analysis and design techniques
presented here are based on an appropriate generalisation of classical
feedback methods. This enables a comprehensive and accurate representation of
the behaviour of a multivariable feedback system to be given in terms of a

basic set of graphical indicators.

1.1 The Interactive Design Process

The relationship between man and machine " in the interactive design

process is summarised in Fig. 1.1. We consider data passed from machine to

[EEOLS



man in terms of indicators and data passed from man to machine in terms of

drivers. The man works in terms of a high level conceptual framework and
accesses in the machine a powerful manipulative framework. The basic task in
creating a satisfactory interactive computing system is to get these two
frameworks to mesh together satisfactorily via an appropriate set of
Aindicators an.d drivers.

It is important to realise, as illustrated by Fig. 1.2, that design
is a feedback process, and that in geteéral both the object being created and
the specification against which it ia being manipulated are‘being iteratively
adjusted in a feedback cycle of dependence as the design proceeds. Design can
also be dés‘cribed as a process of ins!t;ntiation: the progessive generation of
@ specific fully defined object from an initial incomplete general
description. In creating a specificiinstance of the general class of object
desired, the designer is grappling with both uncertainty and complexity, and
it is for coping with, these twin so> ces of difficulty that the interactive
man/machine combination is well suited: the man to handle uncertainty and the
machine to handle complexity. In seeking to define the relative roles of man
and machine one must start from a consideration of their strengths and
weaknesses in respect of the tasks involved. The man has as strengths:

° the ability to abstract, simplify and conceptualise
° the ability to handle incomplete and ill-defined descriptions
° experience and common sense
° adaptability and flexibility
° skills in pattern-recognition and association.
He has as weaknesses:
° short-term memory linit.at.ioxié:‘
° slowness in executing conplex,’procedures

1
° tendency to fatigue and distrattion



o varying responses to similar stimuli
o inability to handle many disparate activities at the same time
o difficulties in long-term memory retrieval.
The machine has as strengths:
o speed and reliability
° extensive and;accurnte short-term and long-term ie-ory
° jindifference to fatigue
o predicability of response
o ability to handle large amounts of data and to perform a nusber of
unrelated tasks simultaneously
° ability to accurately execute extremely complex formally-specified
procedures.
It has as weaknesses:
o jnability to generalise
° no conceptual level and no common sense
° inability to disembiguate and to handle uncertainty

¢ lack of flexibility and adaptability.

As has already been emphasised, design is a feedback process and this
feedback is critically important in progressively stripping away the
uncertainty in the original design specification. In the following
. sub-section design methods are considered in three categories associated with
different aloun.tn of initial uncertainty about the behaviour of the objects
being handled: analytical, procedural and experimental. Although the
requirements are markedly different" in the three cases, the same general
principles apply. The man sets and refines goals, argues from general
principles in terms of abstract concepts, and handles ambiguity, conflict of

objectives and uncertainties in description and performance. The wmachine



evaluates functions, executes complex procedures, searches through complex
data sets, generates and manipulates indicators, and accepts and acts on
drivers.

When develbping an interactive computing environment, we have to take
proper account of the man as well as the machine. In discussing this it is
useful to talk in terms of principles and procedures. Principles are the
organisers of high-level declarative knowledge, and procedures are the
implementors of low-level imperative knowledge; a man thinks in terms of
general principles, and a machine functions in terms of formally specified
procedures. In the interactive computing context we have to handle both
formal and informal knowledge, and also declarative and imperative knowledge,
and somehow we have to make them all fit together in an effective and
efficient way, as illustrated by Fig. 1.3.

The basic problem of an automatic control system designer is to
create or modify a given dynemical system so that it has a specified behaviour
or set of attributes. In doing so he wants to uﬁe the interactive computing
environment to: ?

° handle formal declarative knowledge by evaluating for him the behaviour
and attributes of any given dynamical modei
handle formal imperative knowledge by executing appropriate sequences
of procedures in order to attain specified objectives
° 'handle informal declarative knowledge in the form of textual
descriptions of background theory, codes of practice, design data
bases etc.
¢ handle informal imperative knowledge in the form of design guidelines,

rules of practice, mandatory design requirements, etc.

To do all these satisfactorily will require a wide range of software, display



