Introduction to

physical
mathematics

T S s S
P.G.HARPER

D.L. WEAIRE



Introduction to

physical
mathematics

P.G.HARPER

Professor of Theoretical Physics, Heriot-Watt University, Edinburgh

D.L. WEAIRE

Erasmus Smith’s Professor, Department of Pure and Applied Physics
Trinity College, Dublin

+ Y h
The right of the
University of Cambridge
to print and sell
all manner of books
was granted by
Henry VIII in 1534.
The University has printed
and published continwously
since 1584.

—

CAMBRIDGE UNIYERSITY PRESS,
Cambridge g

London New York New Richelle
Melbourne Sydney !



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 {1RP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1985

First published 1985

Printed in Great Britain at the University Press, Cambridge
Library of Congress catalogue card number: 84-11411

British Library cataloguing in publication data
Harper, P.G.
Introduction to physical mathematics.

1. Mathematical physics
1. Title II. Weaire, D.L.
530.1'5 QC20

ISBN 0 521 26278 hard covers
ISBN 0 521 26908 3 paperback

TP



PrefaCe

The theoretical side of physical science holds up a mathematical mirror to
nature. It seeks to find in the infinite variety of physical phenomena the few
basic laws and relationships which underlie them. A secondary goal is the
- expression of these relations in efficient and transparent language.

After Newton had shown the power of this method, the eighteenth and
nineteenth centuries saw its steady advance, hand-in-hand with experiment.
At the end of the nineteenth century there was a crisis in physics - a
widening gulf between theory and experiment — but, when Einstein
emerged to resolve it, the new physics was still based on the old
mathematics. It was simply used in surprising new ways. So it remains
today, to a large extent, whatever educational theorists may tell us. Newton
would not be greatly puzzled by the mathematics of Schrédinger’s
Equation.

On the other hand, the rapid development of computers is certainly
changing our attitude to mathematics. This is obvious in the case of
straightforward numerical calculations, but it extends also to the simula-
tion of complex systems, the manipulation of algebra and even the proving
oféheorems. Applied mathematics is the art of the possible, and computers
have widened its scope enormously. They are not just ‘number-crunchers’.
Nor are they available only to specialists. Most students today enjoy access
to a powerful computer system, and many are skilled programmers at an
carly age. '



viii Preface

Today’s physical scientist needs both a feeling for the power of traditional
analytic methods in relation to the physical world and an appreciation of
modern computational methods. University curricula which rigidly sep-
arate mathematics, physics and computer science do not serve him well. At
some stage, preferably at the beginning, these subjects should be brought
together. This is what we have tried to do. )

Our subject matter divides naturally into three parts. Elementary aspects
of vectors, matrices and functions are introduced in chapters 1-11. The use
of calculus and various approximate methods in solving physical problems,
particularly those which involve differential equations, is covered in
chapters 12-24. Chapters 25-34 introduce physical fields and the as-
sociated partial differential equations. Our objective throughout is the
development of qualitative understanding and practical know-how, rather
than rigour and completeness.

At various points in the text we have gone right back to basics, to explain
things which university and college students have surely met before, such as
differentiation. Most lecturers find that they must do this in an introductory

course, whatever the curriculum may say, in order to bring all of the class’

up to a similar level of preparedness. Moreover, even the simplest
operations raise many questions when we consider the pitfalls of their
practical applications.

At Heriot-Watt, lectures based on this book run in parallel to a
conventional course in pure mathematics (mostly calculus) in the first year,
forming a bridge between the mathematics and physics courses. The class is
given plenty of time to explore the exercises and encouraged to do so
critically and creatively.

These exercises are indeed an integral part of the course and should be
studied regularly. Some of the numerical ones are quite open-ended, since

' already students are using a great variety of computing hardware and it is
hard to say what they may be using within a few years. Ideally, they should
get some practice in the use of back-of-envelope arithmetic, hand cal-
culators, and computers, including perhaps some library subroutines for
numerical analysis. Some of the exercises make good material for a
classroom discussion, reinforcing the message that applied mathematics is
not a collection of cut-and-dried procedures but a flexible framework
within which physical systems can be described in a variety of ways. This is
not just an introduction - it is an invitation.

P.G. Harper
D.L. Weaire



Some notes on notation

The mathematical notation that we use is quite traditional. The following
notes may be helpful in resolving some ambiguities.

Symbol

2

Meaning and Notes

tends to

The operation of taking a limit is the foundation of the calculus. The limit
symbol should not be confused with ~ (see below). Occasionally we also
use an arrow to indicate replacement (so that a — b means ‘a is replaced by
b’), or displacement from one point to another.

behaves as
This always applies in some limit (sometimes implied rather than stated).
For example, ‘f(x) ~ g(x) as x - c0’ means

S(x)

———=las x> o0.
g(x)

approximately equals

Strictly speaking, this is rather meaningless unless there is some statement
of the magnitude of the departure from equality (the error). Nevertheless it
is widely used more casually to indicate the replacement of an exact value
or formula by one which is not exact but of acceptable accuracy for the
purpose at hand. )
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O() of order...

Again a limit is involved. For example, f(x)=O(x?) as x—0 means
x "3 f(x)— a finite limit, as x — 0. It thus has a similar meaning to that of
~, but less strict since the finite limit does not have to be unity. In
particular, it may be zero.

(Greek capital delta) increment of
This is used here and in many introductory physics texts for an increment
of a variable. Usually a small increment is implied, and often the limit is
eventually taken in which all increments go to zero. This leads in some
cases to differential relations, via

dy (Ay)

—=lim | —

dx Ax

Ax—0
and in others to integral relations.

(bold typeface) a vector quantity

A physical vector, or a column vector in matrix theory. In the latter, it is
usual to reserve lower case letters for vectors, and capitals for matrices,
except where tradition dictates otherwise!

vector which represents the line AB

In the use of vectors in association with geometrical constructions, this
alternative notation denotes the vector of magnitude equal to the length of
AB, in the direction indicated.

4B B
A/

(Greek capital sigma) ‘sum’

This has the usual meaning of a summation, but physical scientists often

use it without the indication of the summation labels and range which are
N

strictly required. Thus ) m.x; might be written ) mx whenever its

meaning is obvious from the context.



Some notes on notation xi

The Greek alphabet
In the interests of clarity and to avoid ambiguity, Greek symbols are often *
invoked in physical mathematics, to supplement the Roman alphabet.
Many have traditional connotations — 4 for wavelength, v for frequency, p
for density... . Mercifully, the use of other alphabets or typefaces, such as
gothic, seems to be dying out.

lower

case capital
alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu
nu
xi
omicron
pi
rho
sigma
tau
upsilon
phi
chi
pst
omega

(see notes above)

(see notes above)

EE€EXN BV T 2 QT N OMTETE MR~ DI IO 2 ™R
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The symbol V is usually called ‘grad’ but, somewhat confusingly, V2 is
called ‘del-squared These stand for operators (chapters 28, et seq.).



00~ N BN

RO o st pmt st ek md ek e e
SO 00 1N W= O N

Contents

: 3

Preface

‘Some notes on notation

Introduction
Errors

_Cartesian coordinates

Vectors

The scalar product

The vector product and rotation
Matrices in physics

The transformation of matrices

The matrix eigenvalue equation
Exponential and logarithm functions
Sine and cosine functions

Graph plotting and curve sketching
Differentiation

Approximations

Power series and Taylor’s expansion
Partial differentiation

Integration

The differential equation

Solving first-order differential equations

Second-order differential equations

vii
ix

17
23
29
35
43

57
62
69
76
87
94
9
108
118
128

134

141



vi

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Contents

Solving second-order differential equations 147
The complex exponential 153
The circuit equation 159
Harmonics and Fourier series 165
The diffusion equation 173
Waves 184
The rate of change of a vector 194
The scalar field and gradient operator 199
The vector field 206
Line integration 212
The potential field 218
Surface and volume integration 223
Flux and divergence 229
Circulation and the curl 235
Conclusion 243
Miscellaneous exercises 248
Index 259

Some elementary computer programs, together with answers to the
exercises, are contained in a supplementary booklet. These may be
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Introduction

L "

. Most physical laws express numerical relations between quantities which
can be independently measured, such as the mass of a body, its acceleration
and the force which is applied to it. Ultimately, they are established or
refuted by experiment. The range of their validity is determined by the range
of practicable experiments. Their generality is always in question, and
physicists continually seek new insights in the breakdown of old theories.

It is important therefore to distinguish between physical laws, which are:
provisional and approximate (since, in principle, we expect to find
circumstances in which they do not apply), and other mathematical
relationships which are merely conventional definitions, such as ‘momen-
tum equals mass times velocity’. These cannot be overturned, although
there may be a time or a place in which they are not useful.

-Given a problem to solve, we make the transition to mathematics by
choosing appropriate physical laws and definitions. For the purposes of
mathematical manipulation we may provisionally regard this formulation
as exact, but in practice we will soon encounter uncertainties of two kinds.

First, if we wish to use experimentally measured quantities as numerical
input to our calculations, as must ultimately be the case, we should
recognise that every measurement involves some degree of uncertainty. The -

word ‘error’ is commonly used for this, which is unfortunate, because it need

not be the result of any mistake or misjudgement, but may simply follow
from the limited accuracy of the available measuring apparatus. We should
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be aware of the magnitude of this error and try to trace its effects through
our calculation, to see what bearing it has on the final result or output. This
can then be assigned some estimate of uncertainty or ‘error bar’.

Secondly, any numerical calculation that we perform entails further
errors. These may arise from the round-off error of the computer or
calculator (since only a finite number of digits can be retained), or the
approximations of the numerical methods which are used.

In chapter 2 we shall look at errors in more detail. In the rest of the
chapters we shall talk about them only when some interesting point arises,
e.g. when there is a possibility of large errors in a particular numerical
method. However, in every real application of mathematics this aspect must
not be overlooked.

It must also be borne in mind that physical quantities are expressed in
terms of units, and only rarely do we meet dimensionless quantities which
do not require them. Even in a mathematically oriented course units must
be respected.

On the other hand, whenever one is concentrating on the mathematical
aspects of a theory the units may often be disregarded, as we do from time to
time. The closer one gets to real applications the more important it is to
remember that all input values and all final results should have clearly
stated units. If one works within a consistent scheme of units such as the SI
system one can often ignore units at intermediate stages in a calculation,
and assign the obvious units to the final result.

So the full result of a measurement or calculation should look something
like the following (for an acceleration):

a=632+0.02ms™2 (1.1

Without some reference to units, this would be meaningless. Without the
error estimate + 0.02, it would still be acceptable, but would carry the
implication that the result 6.32 was expegted to be correct to within 0.005,
i.e. that errors are unlikely to affect the last digit which is retained. In either
case, some thought must be given to the number of significant figures which
are retained. The above might have been the result ‘of a computer
calculation which printed out 6.322371. The error estimate causes us to
round off this number by the elimination of the last four digits, because they
are insignificant. It would have been. pointless to include more digits, in
view of the error associated with the result. Indeed if the error had not been
stated, extra digits would have been quite misleading. People often forget to
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‘prune’ their results in this way. An amusing example is provided by the
Laws of Rugby Football in which, for the metrically minded referee, it is
recommended that the ball should have ‘a pressure equivalent to 0.6697—
.7031 kilograms per square centimetre at sea level’. Some worthy official
worked this out by converting the old fashioned ‘9-10 pounds per square
inch’, but would have done well to drop at least two figures from his
results.

What about the actual mathematical methods — how do they proceed?
You should try to develop a f{lexible, balanced attitude to this, and
remember that there are at least two goals — quantitative description and
qualitative understanding. Prescribed questions for homework and
examinations may call for some obvious technique which you have just
learned. But in reality, any given problem in physical mathematics can be
attacked from many directions. Are there powerful theorems which will
transform or reduce it to something simpler? Is there an ‘exact’ analytical
solution? (We shall discuss the meaning of this in chapter 10.) Is there an
exact solution to a related problem, which can be used as a starting
approximation? Having exhausted this line of enquiry, the applied
mathematician nowadays takes his problem to the computer, in the form
most amenable to calculation. Again, there may be a choice of methods.
Increasingly, this is done at quite an early stage because today’s machines
can do wonders with even clumsy and elementary numerical methods.
Often, the results of this ‘brute force’ approach will inspire analytical
methods or approximations that could not be formulated in the first place.
- of course, such a comprehensive view cannot be acquired all at once, but at
every stage you should try to ‘look over your shoulder’ at methods you have
already studied which relate to the subject at hand.

While exceptional individuals are completely comfortable with symbolic
mathematics, most of us make visual images of even the most abstract
relationships. Sketches are always helpful in this respect. We have included -
many of these, and the student is encouraged to do likewise. Computer
graphics have begun to be very widely used as an aid to evaluating
numerical output. Increasingly, moving images and stereographic projec-
tions are used. We have taken a very modest step in this exciting direction
by including computer-generated graphical output wherever appropriate.
Much of this was produced by the same few simple commands to a software
package associated with an HP7470A Plotter, so similar plots can be easily
generated and extended by students or lecturers. In the absence of a plotter,
a simple ‘line-printer plot® will often suffice.
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Summary

1.1. Flow chart for practical mathematicians.

Physical problem requiring

mathematical analysis or
calculation

1

Express in mathematical
terms

1

Is there an ‘exact’

YES

solution?

NO
t

o

Can it be simplified by

YES

suitable approximations?

Do numerical results
suggest approximations?

!

NO
¥

solution based on this

Solve simplified
problem and develop

L |

Is a numerical calculation
practicable?

YES

]

EXERCISES

line-printer plot.

NO

GIVE UP!

matics is the art of the possible’.

Final results
Units? Errors?
Is it reasonable?

!

Presentation as a graph,
table, etc.

. Explain in about a paragraph the meaning of each of the following terms
used in the text: round-off, analytical, stereographic, software, qualitative,

. Discuss the following assertion, taken from the preface: ‘applied mathe-

. The population of a country is an integer with discontinuous changes, yet
itis often described as if it were a continuous function of time. Discuss this,

contrasting it with the case of the size of a family.
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Errors

Physical scientists use a lot of common sense and only a little statistics in
dealing with errors. Only in special areas (such as the work of Standards
Laboratories) are errors relentlessly pursued with full rigour. Usually, it is
enough to be satisfied that they are negligible or insignificant for the
purposes at hand. As with safety regulations, one tries to ensure a large
‘margin of error’ wherever possible. This contrasts with the state of affairs in
biology and in social sciences. These deal in quantities, such as the
frequency of the human heartbeat, so widely variable that errors must be
treated with caution and proper statistical methodology. But even common
sense needs a little mathematical background, such as is given here.
First, we may distinguish between random and systematic errors. A
systematic error is one which is consistent from one measurement to the
next. It might arise from inaccurate adjustment of instruments, a faulty
calibration, the ineptitude of the scientist himself, or simply from a failure to
recognise some influence upon the data which was not the object of the
experiment. We can try to identify such errors and either eliminate them or
add corrections to allow for them, whereupon they no longer concern us. It
is not usual to include systematic errors in an error estimate since, if we can
identify them, they can be removed! Hence we shall concentrate on the
second type of error, which is random, i.e. the error associated with one
measurement has nothing to do with the next or subsequent measurements.
This kind of uncertainty, which is due to some fluctuating influence upon
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the measurement, is recognised if we repeat one measurement several times
and obtain slightly different results. Unlike the systematic error, random
error should not affect the average of a sufficiently large number of
measurements. Thisis the key toits reduction. How then are we to do thisand
how are we to express the final result?

To'make this concrete, consider the measurement of the diameter of a
standard pencil taken from stock. A micrometer can apparently measure
this to within a few per cent of a millimetre. But in applying the gauge to the
soft wood, we may compress it slightly. To the extent that we do this
consistently, the error is systematic and could be identified by suitable
experiments and so allowed for. There would, however, remain a variable
part of the error, due to a variable force being applied to tighten the

2.1. Measurement of pencil diameter with a micrometer.
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micrometer. This might be assumed to be random. If this uncertainty is
greater than that associated with the instrument itself and its scale, it must
take over as the main source of the error associated with the measurement.

The pencil width itself will still be variable. This could be explored simply
by repeating the measurement on different parts of a single pencil, or on
different pencils. In fundamental physics, life is simpler—it seems that every
two electrons, for instance, are exactly the same, as far as we can tell. The
only uncertainty in our knowledge of the mass or charge of an electron is
that derived from the process of measurement. However, with pencils as
with much else, we encounter the kind of intrinsic variability which
becomes so serious in biological science. It will make our arguments more
concrete if we concentrate upon this variability, supposing it to be much
greater than the uncertainty of measurement.

Our procedure will then be to measure the diameters of a large number of
individual pencils, and try to extract from these a standard value and
uncertainty limits, rather as we did in eq. (1.1). What do we mean by a
standard value? It is natural to take the average or mean value from our
measurements as an estimate of the mean value {x) which would be
obtained in the limit of an infinite number of such measurements. We can
getanimmediate feeling for the random deviations from the average value by
plotting the distribution of measured diameters, asin fig. 2.2. Ideally, thisisa

2.2(a). Distribution function for pencil diameters (schematic).

Distribution function
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