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Preface

This is the third version of a book on differential manifolds. The first
version appeared in 1962, and was written at the very beginning of
a period of great expansion of the subject. At the time, I found no
satisfactory book for the foundations of the subject, for multiple reasons.
I expanded the book in 1971, and I expand it still further today.
Specifically, I have added three chapters on Riemannian and pseudo
Riemannian geometry, that is, covariant derivatives, curvature, and some
applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as
well as some calculus of variations and applications to volume forms. I
have rewritten the sections on sprays, and I have given more examples of
the use of Stokes’ theorem. I have also given many more references to
the literature, all of this to broaden the perspective of the book, which I
hope can be used among things for a general course leading into many
directions. The present book still meets the old needs, but fulfills new
ones.

At the most basic level, the book gives an introduction to the basic
concepts which are used in differential topology, differential geometry,
and differential equations. In differential topology, one studies for instance
homotopy classes of maps and the possibility of finding suitable
differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
One may also use differentiable structures on topological manifolds to
determine the topological structure of the manifold (for example, a_la
Smale [Sm 67]). In differential geometry, one puts an additional struc-
ture on the differentiable manifold (a vector field, a spray, a 2-form, a
Riemannian metric, ad lib.) and studies properties connected especially
with these objects. Formally, one may say that one studies properties
invariant under the group of differentiable automorphisms which preserve
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the additional structure. In differential equations, one studies vector fields
and their integral curves, singular points, stable and unstable manifolds,
etc. A certain number of concepts are essential for all three, and are so
basic and elementary that it is worthwhile to collect them together so
that more advanced expositions can be given without having to start
from the very beginnings.

It is possible to lay down at no extra cost the foundations (and much
more beyond) for manifolds modeled on Banach or Hilbert spaces rather
than finite dimensional spaces. In fact, it turns out that the exposition
gains considerably from the systematic elimination of the indiscriminate
use of local coordinates x, ...,x, and dx,, ..., dx,. These are replaced
by what they stand for, namely isomorphisms of open subsets of the
manifold on open subsets of Banach spaces (local charts), and a local
analysis of the situation which is more powerful and equally easy to use
formally. In most cases, the finite dimensional proof extends at once
to an invariant infinite dimensional proof. Furthermore, in studying
differential forms, one needs to know only the definition of multilinear
continuous maps. An abuse of multilinear algebra in standard treatises
arises from an unnecessary double dualization and an abusive use of the
tensor product.

I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when inte-
grating differential forms, because the dx, A -+ A dx, corresponds to the
dx,--+dx, of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that
the neophyte will thus be helped in getting acquainted with the literature.
I also hope to convince the expert that nothing is lost, and much is
gained, by expressing one's geometric thoughts without hiding them
under an irrelevant formalism.

It is profitable to deal with infinite dimensional manifolds, modeled on
a Banach space in general, a self-dual Banach space for pseudo Rieman-
nian geometry, and a Hilbert space for Riemannian geometry. In the
standard pseudo Riemannian and Riemannian theory, readers will note
that the differential theory works in these infinite dimensional cases, with
the Hopf-Rinow theorem as the single exception, but not the Cartan-
Hadamard theorem and its corollaries. Only when one comes to dealing
with volumes and integration does finite dimensionality play a major
role. Even if via the physicists with their Feynman integration one even-
tually develops a coherent analogous theory in the infinite dimensional
case, there will still be something special about the finite dimensional
case.

One major function of finding proofs valid in the infinite dimensional
case is to provide proofs which are especially natural and simple in the
finite dimensional case. Even for those who want to deal only with finite
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dimensional manifolds, I urge them to consider the proofs given in this
book. In many cases, proofs based on coordinate free local representa-
tions in charts are clearer than proofs which are replete with the claws of
a rather unpleasant prying insect such as Iy;. Indeed, the bilinear map
associated with a spray (which is the quadratic map corresponding to a
symmetric connection) satisfies quite a nice local formalism in charts. I
think the local representation of the curvature tensor as in Proposition
1.2 of Chapter IX shows the efficiency of this formalism and its superior-
ity over local coordinates. Readers may also find it instructive to com-
pare the proof of Proposition 2.6 of Chapter IX concerning the rate of
growth of Jacobi fields with more classical ones involving coordinates as
in [He 78], pp. 71-73.

Of course, there are also direct applications of the infinite dimensional
case. Some of them are to the calculus of variations and to physics, for
instance as in Abraham-Marsden [AbM 78). It may also happen that
one does not need formally the infinite dimensional setting, but that it is
useful to keep in mind to motivate the methods and approach taken in
various directions. For instance, by the device of using curves, one can
reduce what is a priori an infinite dimensional question to ordinary
calculus in finite dimensional space, as in the standard variation formulas
given in Chapter IX, §4.

Similarly, the proper domain for the geodesic part of Morse theory is
the loop space (or the space of certain paths), viewed as an infinite
dimensional manifold, but a substantial part of the theory can be de-
veloped without formally introducing this manifold. The reduction to the
finite dimensional case is of course a very interesting aspect of the situa-
tion, from which one can deduce deep results concerning the finite di-
mensional manifold itself, but it stops short of a complete analysis of the
loop space. (Cf Boot [Bo 60], Milnor [Mi 63]) This was already
mentioned in the first version of the book, and since then, the papers of
Palais [Pa 63] and Smale [Sm 64] appeared, carrying out the program.
They determined the appropriate condition in the infinite dimensional
case under which this theory works.

In addition, given two finite dimensional manifolds X, Y it is fruitful
to give the set of differentiable maps from X to Y an infinite dimensional
manifold structure, as was started by Eells [Ee 58], [Ee 59], [Ee 61], and
[Ee 66]. By so doing, one transcends the purely formal translation of
finite dimensional results getting essentially new ones, which would in
turn affect the finite dimensional case.

Foundations for the geometry of manifolds of mappings are given in
Abraham’s notes of Smale’s lectures [Ab 60] and Palais’s monograph
(Pa 68].

For more recent applications to critical point theory and submanifold
geometry, see [PaT 88].

One especially interesting case of Banach manifolds occurs in the
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theory of Teichmuller spaces, which, as shown by Bers, can be embedded
as submanifolds of a complex Banach space. Cf. {Ga 87], [Vi 73].

In the direction of differential equations, the extension of the stable
and unstable manifold theorem to the Banach case, already mentioned as
a possibility in the earlier version of this book, was proved quite ele-
gantly by Irwin [Ir 70], following the idea of Pugh and Robbin for
dealing with local flows using the implicit mapping theorem in Banach
spaces. I have included the Pugh-Robbin proof, but refer to Irwin’s
paper for the stable manifold theorem which belongs at the very begin-
ning of the theory of ordinary differential equations. The Pugh—Robbin
proof can also be adjusted to hold for vector fields of class H? (Sobolev
spaces), of importance in partial differential equations, as shown by Ebin
and Marsden [EbM 70]. '

It is a standard remark that the C®-functions on an open subset of a
euclidean space do not form a Banach space. They form a Fréchet space
(denumerably many norms instead of one). On the other hand, the im-
plicit function theorem and the local existence theorem for differential
equations are not true in the more general case. In order to recover
similar results, a much more sophisticated theory is needed, which is only
beginning to be developed. (Cf. Nash’s paper on Riemannian metrics
[Na 56], and subsequent contributions of Schwartz [Sc 60] and Moser
[Mo 61]) In particular, some additional structure must be added
(smoothing operators). Cf. also my Bourbaki seminar talk on the sub-
ject [La 61]. This goes beyond the scope of this book, and presents an
active topic for researth.

I have emphasized differential aspects of differential manifolds rather
than topological ones. I am especially interested in laying down basic
material which may lead to various types of applications which have
arisen since the sixties, vastly expanding the perspective on differential geom-
etry and analysis. For instance, I expect the marvelous book {BGV 92]
to be only the first of many to present the accumulated vision from
the seventies and ecighties, after the work of Atiyah, Bismut, Bott, Gilkey,
McKean, Patodi, Singer, and many others.

New Haven, 1994 SERGE LANG

Added Comments, 1995. Immediately after the present book appeared
in 1995, two other books also appeared which I wish to recommend very
highly. One of them is the second edition of Gilkey’s book Invariance
Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (CRC
Press, 1995). The other is the second edition of Klingenberg’s Riemannian
Geometry (Walter de Gruyter, 1995), which includes a nice chapter on the
infinite dimensional Hilbert manifold of H'-mappings, and several sub-
stantial applications to topology and closed geodesics on various com-
pact manifolds.
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CHAPTER |

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. As mentioned in the foreword, Chapter VIII of Dieudonné's
book or my book on real analysis [La 93] give a self-contained and
complete treatment for Banach spaces. We summarize certain facts con-
cerning their properties as topological vector spaces, and then we sum-
marize differential calculus. The reader can actually skip this chapter and
start immediately with Chapter II if the reader is accustomed to thinking
about the derivative of a map as a linear transformation. (In the finite
dimensional case, when bases have been selected, the entries in the matrix
of this transformation are the partial derivatives of the map.) We have
repeated the proofs for the more important theorems, for the ease of the
reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, topological vector spaces and continu-
ous linear maps, open subsets of Banach spaces and differentiable maps,
differentiable manifolds and differentiable maps, vector bundles and vec-
tor bundle maps, topological spaces and continuous maps, sets and just
plain maps. In an arbitrary category, maps are called morphisms, and in
fact the category of differentiable manifolds is of such importance in this
book that from Chapter II on, we use the word morphism synonymously
with differentiable map (or p-times differentiable map, to be precise). All
other morphisms in other categories will be qualified by a prefix to
indicate the category to which they belong.
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I, §1. CATEGORIES

A category is a collection of objects {X, Y, ...} such that for two objects
X, Y we have a set Mor(X, Y) and for three objects X, Y, Z a mapping
(composition law)

Mor(X, Y) x Mor(Y, Z) - Mor(X, Z)
satisfying the following axioms:

CAT 1. Two sets Mor(X, Y) and Mor(X’", Y') are disjoint unless X =
X' and Y = Y', in which case they are equal.

CAT 2. Each Mor(X, X) has an element idy which acts as a left and
right identity under the composition law.

CAT 3. The composition law is associative.

The elements of Mor(X, Y) are called morphisms, and we write
frequently f: X — Y for such a morphism. The composition of two
morphisms f, g is written fg or fog.

A functor A: U — A’ from a category A into a category U’ is a map
which associates with each object X in U an object A(X) in U, and with
each morphism f: X — Y a morphism A(f): 4(X) - A(Y) in U’ such that,
whenever f and g are morphisms in %A which can be composed, then
Mfg) = A(f)A(g) and A(idy) = id,, for all X. This is in fact a covariant
‘functor, and a contravariant functor is defined by reversing the arrows
(so that we have A(f): A(Y) — A(X) and A(fg) = MPAS))

In a similar way, one defines functors of many variables, which may
be covariant in some variables and contravariant in others. We shall meet
such functors when we discuss multilinear maps, differential forms, etc.

The functors of the same variance from one category U to another o'
form themselves the objects of a category Fun(2, %'). Its morphisms
will sometimes be called natural transformations instead of functor mor-
phisms. They are defined as follows. If 4, u are two functors from U to
A’ (say covariant), then a natural transformation t: 1 — u consists of a
collection of morphisms

ty: A(X) - p(X)

as X ranges over U, which makes the following diagram commutative for
any morphism f: X - Y in U:

AX) —5 u(X)

‘-(f)l u(f)
AY) —— p(n)
Y
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In any catcgory 2, we say that a morphism f: X - Y is an isomor-
phism if there exists a morphism g: ¥ — X such that fg and gf are .the
identities. For instance, an isomorphism in the category of topological
spaces is called a topological isomorphism, or a homeomorphism. In
general, we describe the category to which an isomorphism belongs by
means of a suitable prefix. In the category of sets, a set-isomorphism is
also called a bijection.

If f:X—>Y is a morphism, then a’section of f is defined to be a
morphism g: Y — X such that fog =id,.

I, §2. TOPOLOGICAL VECTOR SPACES

The proofs of all statements in this section, including the Hahn-Banach
theorem and the closed graph theorem, can be found in [La 93].

A topological vector space E (over the reals R) is a vector space with a
topology such that the operations of addition and scalar multiplication
are continuous. It will be convenient to assume also, as part of the
definition, that the space is Hausdorff, and locally convex. By this we
mean that every neighborhood of 0 contains an open neighborhood U of
0 such that, if x, y are in U and 0 <t < 1, then tx + (1 — £)y also lies in
U.

The topological vector spaces form a category, denoted by TVS, if we
let the morphisms be the continuous linear maps (by linear we mean
throughout R-linear). The set of continuous linear maps of one topologi-
cal vector space E into F is denoted by L(E,F). The continuous r-
multilinear maps

V:Ex---xE-F

of E into F will be denoted by L'(E,F). Those which are symmetric
(resp. alternating) will be denoted by LI(E,F) or L[.(E F) (resp.
L(E,F)). The isomorphisms in the category TVS are called toplinear
isomorphisms, and we write Lis(E, F) and Laut(E) for the toplinear iso-
morphisms of E onto F and the toplinear automorphisms of E.

We find it convenient to denote by L(E), L'(E), L(E), and L(E) the
continuous linear maps of E into R (resp. the continuous, r-multilinear,
symmetric, alternating maps of E into R). Following classical terminol-
ogy, it is also convenient to call such maps into R forms (of the corre-
sponding type). If E,, ...,E, and F are topological vector spaces, then
we denote by L(E,,...,E,;F) the continuous multilinear maps of the
product E, x --- x E, into F. We let:

End(E) = L(E, E),
Laut(E) = elements of End(E) which are invertible in End(E).
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The most important type of topological vector- space for us is the
Banachable space (a TVS which is complete, and whose topology can be
defined by a norm). We should say Banach space when we want to put
the norm into the structure. There are of course many norms which can
be used to make a Banachable space into a Banach space, but in prac-
tice, one allows the abuse of language which consists in saying Banach
space for Banachable space (unless it is absolutely necessary to keep the
distinction).

For this book, we assume from now on that all our topological vector
spaces are Banach spaces. We shall occasionally make some comments to
indicate where it might be possible to generalize certain resuits to more
general spaces. We denote our Banach spaces by E, F, ....

The next two propositions give two aspects of what is known as the
closed graph theorem..

Proposition 2.1. Every continuous bijective linear map of E onto F is a
toplinear isomorphism.

Proposition 2.2. If E is a Banach space, and F,, F, are two closed
subspaces which are complementary (i.e. E=F, + F, and F, nF, = 0),
then the map of F, x F, onto E given by the sum is a toplinear
isomorphism.

We shall frequently encounter a situation as in Proposition 2.2, and if
F is a closed subspace of E such that there exists a closed complement
F, such that E is toplinearly isomorphic to the product of F and F,
under the natural mapping, then we shall say that F splits in E.

Next, we state a weak form of the Hahn-Banach theorem.

Proposition 2.3. Let E be a Banach space and x # 0 an element of E.
Then there exists a continuous linear map i of E 'into R such that
Ax) # 0. oo,

One constructs A by Zorns lemma, supposing that A is defined on
some subspace, and having a bounded norm. One then extends 4 to the
subspace generated by one additional element, without increasing the
norm.

In particular, every finite dimensional subspace of E splits if E is
complete. More trivially, we observe that a finite codimensional closed
subspace also splits.

We now come to the problem of putting a topology on L(E, F). Let
E, F be Banach spaces, and let

A:E-F
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be a continuous linear map (also called a bounded linear map). We can
then define the norm of A to be the greatest lower bound of all numbers
K such that

I4x] = Kix|

for all x € E. This norm makes L(E, F) into a Banach space.

In a similar way, we define the topology of L(E,,...,E,; F), which is a
Banach space if we define the norm of a multilinear continuous map

AE, x-xE >F
by the greatest lower bound of all numbers K such that

JA(xy, .. x) S Kixg | ]x, ).
We have:

Proposition 24. If E,, ...,E  F are Banach spaces, then the canonical
map
L(E,, L(E,,...,L(E,, F),...)) > L"(E,, ... .E,; F)

from the repeated continuous linear maps to the continuous multilinear
maps is a toplinear isomorphism, which is norm:preserving, i.e. a Banach-
isomorphism.

The preceding propositions could be generalized to a wider class of
topological vector spaces. The following one exhibits a property peculiar
to Banach spaces.

Proposition 2.5. Let E, F be two Banach spaces. Then the set of
toplinear isomorphisms Lis(E, F) is open in L(E, F).

The proof is in fact quite simple. If Lis(E, F) is not empty, one is
immediately reduced to proving that Laut(E) is open in L(E, E). We
then remark that if ue L(E, E), and Ju| < 1, then the series

Ltu+u?+--

converges. Given any toplinear automorphism w of E, we can find an
open neighborhood by translating the open unit ball multiplicatively
from 1 to w.

Again in Banach spaces, we have:

Proposition 2.6. If E, F, G are Banach spaces, then the bilinear maps

L(E,F) x L(F, G) > L(E, G),
L(E,F) x E>F,
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obtained by composition of mappings are continuous, and similarly for
multilinear maps.

Remark. The preceding proposition is false for more general spaces
than Banach spaces, say Fréchet spaces. In that case, one might hope
that the following may be true. Let U be open in a Fréchet space and
let

f:U-LEF),
g:U— L(F, G),

be continuous. Let y be the composition of maps. Then y({, g) is contin-
uous. The same type of question arises later, with differentiable maps
instead, and it is of course essential to know the answer to deal with the
composition of differentiable maps.

I, §3. DERIVATIVES AND COMPOSITION OF MAPS

A real valued function of a rea! variable, defined on some neighborhood
of 0 is said to be o(t) if
lim o(t)/t = 0.

=0

Let E, F be two topological vector spaces, and ¢ a mapping of a
neighborhood of 0 in E into F. We say that ¢ is tangent to O if, given a
neighborhood W of 0 in F, there exists a neighborhood V of 0 in E such
that

o(tV) c o(t)W

for some function o(t). If both E, F are normed, then this amounts to
the usual condition

lo(x)| £ |x|¥(x)

with lim y(x) = 0 as |x| = 0.

Let E, F be two topological vector spaces and U open in E. Let
J: U —F be a continuous map. We shall say that f is differentiable at a
point x, € U if there exists a continuous linear map A of E into F such
that, if we let

S(xo + y) = flxo) + Ay + @(y)

for small y, then ¢ is tangent.to 0. It then follows trivially that A is
uniquely determined, and we say that it is the derivative of f at x,. We
denote the derivative by Df(x,) or f'(x,). It is an element of L(E, F). If



