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Preface

This book was born out of my fascination with applied mathematics
as a place where the physical world meets the mathematical structures
and techniques that are the cornerstones of most applied mathematics
courses, I am interested largely in human-sized theatres of interaction,
leaving cosmology and particle physics to others. Much of my research
has been motivated by interactions with industry or by contact with
scientists in other disciplines. One immediate lesson from these contacts
is that it is a great asset to an interactive applied mathematician to be
open to ideas from any direction at all. Almost any physical situation has
some mathematical interest, but the kind of mathematics may vary from
case to case. We need a strong generalist streak to go with our areas of
technical expertise.

Another thing we need is some expertise in numerical methods. To
be honest, this is not my strong point. That is one reason why the book
does not contain much about these methods. (Another is that if it had
then it would have been half as long again and would have taken five
more years to write.) In the modern world, with its fast computers and
plethora of easy-to-use packages, any applied mathematician has to be
able to switch into numerical mode as required. At the very least, you
should learn to use packages such as Maple and Matlab for their data
display and plotting capabilities and for the built-in software routines for
solving standard problems such as ordinary differential equations. With
more confidence, you can write your own programs. In many cases, a
quick and dirty first try can provide valuable information, even if this
is not the finished product. Explicit finite differences (remember to use
upwind differencing for first derivatives) and tiny time steps will get you
a long way.

Who should read this book? Many people, I hope, but there are some
prerequisites. I assume that readers have a good background in calculus
up to vector calculus (grad, div, curl) and the elementary mechanics of
particles. I also assume that they have done an introductory (inviscid)
fluid mechanics course and a first course in partial differential equations,
enough to know the basics of the heat, wave and Laplace equations

xi
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Marginal notes are usually
directly relevant to the current
discussion, often being used to
fill in details or point out a
feature of a calculation. This is a
book to work through: feel free
to use the empty margin spaces
for calculations.

Preface

(where they come from, and how to solve them in simple geometries).
Linear algebra, complex analysis and probability put in an occasional
appearance. High-school physics is an advantage. But the most important
prerequisite is an attitude: to go out and apply your mathematics, to see
it in action in the world around you, and not to worry too much about
the technical aspects, focusing instead on the big picture.

Another way to assess the technical level of the book is to position
it relative to the competition. From that point of view it can be thought
of as a precursor to the books by Tayler {58] and Fowler [19], while
being more difficult than, say, Fowkes & Mahoney [18] or Fulford &
Broadbridge [22]. The edited collections [9, 38] are at the same general
level, but they are organised along different lines. The books [40, 56]
cover similar material but with a less industrial slant.

Organisation. The book is organised, roughly, along mathematical
lines. Chapters are devoted to mathematical techniques, starting in Part I
with some ideas about modelling, moving on in Part II to differential
equations and distributions, and concluding with asymptotic (systematic
approximation) methods in Part III. Interspersed among the chapters are
case studies, descriptions of problems that illustrate the techniques; they
are necessarily rather open-ended and invite you to develop your own
ideas. The case studies run as strands through the book. You can ignore
any of them without much impact on the rest of the book, although the
more you ignore the less you will benefit from the remainder. There
are long sections of exercises at the ends of the chapters; they should
be regarded as an integral part of the book and at least should be read
through if not attempted.

Conventions. I use ‘we’, as in ‘we can solve this by a Laplace trans-
form’, to signal the usual polite fiction that you, the reader, and I, the
author, are engaged on a joint voyage of discovery; ‘we’ also signifies
that I am presenting ideas within a whole tradition of thought. “You’ is
mostly used to suggest that you should get your pen out and work though
some of the ‘we’ stuff, a good idea in view of my fallible arithmetic, or
do an exercise to fill in some details. ‘I’ is associated with authorial
opinions and can mostly be ignored if you like.

I have tried to draw together a lot of threads in this book, and in
writing it I have constantly wanted to point out connections with some-
thing else or make a peripheral remark. However, I don’t want to lose
track of the argument. As a compromise, I have used marginal notes and
footnotes' with slightly different purposes in mind.

! Footnotes are more digressional and can be ignored by readers who just want to follow
the main line of argument.



Preface

Acknowledgements. Ihave taken examples from many sources. Some
examples are very familiar and I do not apologise for this: the old ones are
often the best. Much the same goes for the influence of books; if you teach
a course using other people’s books and then write your own, some im-
pact is inevitable. Among the books that have been especially influential
are those by Tayler [58], Fowler [19], Hinch [27] and Keener [33]. Even
more influential has been the contribution of colleagues and students.
Many a way of looking at a problem can be traced back to a coffee-
time conversation or a Study Group meeting.? There are far too many
of these collaborators for me to attempt the invidious task of thanking
them individually. Their influence is pervasive. At a more local level,
I am immensely grateful to the OCIAM students who got me out of
computer trouble on various occasions and found a number of errors in
drafts of the book. Any remaining errors are quite likely to have been
caused by cosmic ray impact on the computer memory, or perhaps by
cyber-terrorists. I will be happy to hear about them.

The book began when I was asked to give some lectures at a summer
school in Siena and was continued through a similar event a year later in
Pisa. I am most grateful for the hospitality extended to me during these
visits, I would like to thank the editors and technical staff at Cambridge
University Press for their assistance in the production of the book. In
particular, I am extremely grateful to Susan Parkinson for her care-
ful, constructive and thoughtful copy-editing of the manuscript. Lastly
I would like to thank my family for their forbearance, love and support
while I was locked away typing. This book is dedicated to them.

Colemanballs. At the end of each section of exercises is what would
normally be a wasted space. Into each of these I have put two things. One
is a depiction of a wave form and is explained on p. 212. The other is a
statement made by a real live applied mathematician in full flow. In the
spirit of scientific accuracy, they are wholly unedited. They are mostly
there for their intrinsic qualities (and it would be a miserable publisher
who would deny me that extra ink), but they make a point: interdisci-
plinary mathematics is a collaborative affair; it involves discussions and

2 Study Groups are week-long intensive meetings at which academics and industrial
researchers get together to work on open problems from industry, proposed by the
industrial participants. Over the week, heated discussions take place involving anybody
who is interested in the problem, and a short report is produced at the end. The first UK
Study Group was held in Oxford in 1968, and they have been held every year since,
in Oxford and other UK universities. The idea has now spread to more than 15 coun-
tries on all the habitable continents of the world. Details of forthcoming events, and
reports of problems studied at past meetings, can be found on their dedicated website
www.mathematics-in-industry.org.
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arguments, the less inhibited the better. We all have to go out on a limb,
in the interests of pushing the science forwards. If we are wrong, we try
again. And if the mind runs ahead of the voice, our colleagues won’t take
it too seriously (nor will they let us forget it). Here is one to be going on
with, from the collection [29] of the same title:

‘If I remember rightly, cosw /2 = 1.
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1
The basics of modelling

1.1 Introduction

This short introductory chapter is about mathematical modelling. With-
out trying to be too prescriptive, we discuss what we mean by the term,
why we might want to do it and what kind of models are commonly
used. Then we look at some very standard models, which you have al-
most certainly met before, and we see how their derivation is a blend
of what are thought of as universal physical laws, such as conservation
of mass, momentum and energy, with experimental observations and,
perhaps, some ad hoc assumptions in lieu of more specific evidence.
One of the themes that run through this book is the applicability of
all kinds of mathematical idea to ‘real-world’ problems. Some of these
arise in attempts to explain natural phenomena, for example in models
for water waves. We will see a number of these models as we go through
the book. Other applications are found in industry, which is a source
of many fascinating and non-standard mathematical problems and a big
‘end-user’ of mathematics. You might be surprised at how little is known
of the detailed mechanics of most industrial processes, although when
you see the operating conditions — ferocious temperatures, inaccessible
or minute machinery, corrosive chemicals — you realise how expensive
and difficult it would be to carry out detailed experimental investigations.
In any case, many processes work just fine, having been designed by en-
gineers who know their job. If it ain’t broke, don’t fix it; so where does
mathematics come in? Some important uses are in the quality control
and cost control of existing processes and in the simulation and de-
sign of new processes. We may want to understand: why does a certain



The basics of modelling

type of defect occur; what is the ‘rate-limiting’ part of a process (the
slowest ship, to be speeded up); how to improve efficiency, however
marginally; whether a novel idea is likely to work at all and if so, how to
control it.

It is in the nature of real-world problems that they are large, messy
and often rather vaguely stated. It is very rarely worth anybody’s while
to produce a ‘complete solution’ to a problem which is complicated and
whose desired outcome is not necessarily well specified (to a mathemati-
cian). Mathematicians are usually most effective in analysing a relatively
small ‘clean’ subproblem for which more broad-brush approaches run
into difficulty. Very often the analysis complements a large numerical
simulation which, -although effective elsewhere, has trouble with this
particular aspect of the problem. Its job is to provide understanding
and insight in order to complement simulation, experiment and other
approaches.

We begin with a chat about what models are and what they should
do for us. Then we bring some simple ideas about physical conservation
laws and how to use them together with the experimental evidence about
how materials behave, with the aim of formulating closed systems of
equations; this is illustrated with two canonical models, for heat flow
and for fluid motion. There are many other models embedded elsewhere
in the book, and we will deal with these as we come to them.

1.2 What do we mean by a model?

There is no point in trying to be too precise in defining the term ‘math-
ematical model’: we all understand that it is some kind of mathematical
statement about a problem originally posed in non-mathematical terms.
Some models are explicative, that is, they explain a phenomenon in terms
of simpler, more basic processes. A famous example is Newton’s theory
of planetary motion, whereby the whole complex motion of the solar
system was shown to be a consequence of ‘force equals mass times
acceleration’ and the inverse square law of gravitation. However, not
all models aspire to explain. For example, the standard Black—Scholes
model for the evolution of prices in stock markets, used by investment
banks the world over, says that the percentage difference between tomor-
row’s stock price and today’s is a lognormal random variable. Although
this is a great simplification, in that it says that all we need to know are
the mean and variance of this distribution, it says nothing about what
will cause the price change.

All useful models, whether explicative or not, are predictive: they
allow us to make quantitative predictions (whether deterministic or prob-
abilistic) that can be used either to test and refine the model, should that



