COMPUTING WITH

FORTRAN

A PRACTICAL COURSE

Donald M. Monro

VAR D
gﬁ@3§6ﬂ

COMPUTING WITH

FORTRAN

A PRACTICAL COURSE

" Donald M. Monro

Departmant of Electrical Engineering

. Imperial College of Science and Technology

®

Edward Arnoid

© Donald M. Monro 1977

- Flrst Published 1977
by Edward Arnold (Publishers) Ltd.,
28 Hill Street, London W1X 8LL.

1SBN: 0 7131 2846 2

All Rights Reserved, No part of this publication

may be reproduced, stored in retrieval system, or
transmitted in any form or by sy means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of Edward Arnold
(Publishers) Ltd. o

Printed In Great Britain by The Pitman Press Ltd. Bath.

Preface

At Imperial Cbllege developments in the computing services made it

'possible to develop courses intended to give real experience in

problem solving by computer to undergraduate students at a level
unattainable by traditional programming courses. Having completed
an introduction to computing using BASIC*, I turned to’ the ultimate
objective of fluent FORTRAN and looked unsuccessfully for a.suitable
structured text before preparlng ‘the course which has grown into this
book . ;

The traditional intensive FORTRAN course was -defeated by lectures,
coding forms, and poor turnaround, all of which divorced the student
from his programming. By contrast I prefer to give only an intro-
ductory lecture and set the class loose on the fagilities with
assistance supplied and instructions to submit certain. solutions by
certain deadlines. The student prepares and runs his own programs
and in my mind this is the important difference which does not
require a. timesharing service to make it work.

Almost every experienced programmer claims to be self-taught, and
that is why I intend this book not as a teaching aid, but a learning
aid. It is structured to the extent allawed by the nature of FORTRAN
and endeavours to stress style and efficiency, while introducxng many
techniques and methods used in practice. The FORTRAN is essentially
FORTRAN IV but some nonstandard features are too good to omit and
some compilers are-so restricted that the alternatives have to be
outlined. I am well aware that a new standard FORTRAN is imminent
but it will take some years to apply widely and we cannot wait for
that. I take some care to point out common pitfalls and if some are

- overemphasized it may be because I once stumbled badly there myself.

@wmm2toSmmnmmagwdeMmgmpmﬂmuawhmum
of FORTRAN to data processing and numerical computation. As in BASIC*
there is a strong emphasis on numerical methods and this is taken to
a more advanced-level. This should not. defeat Jthe student aimed at
science or en%ineerinq because I have tried to treat these as exercises
in computing, not mathematics with the intention of - making the computing
1nterest1ng, even challenglng.

*Monro, D. M., Interactive Computing with BASIC, A First Course, Edward Arnoid, London (1974)

N

I am grateful to Professor John Brown and Dr. D. Jones for
allowing my approach to be developed on real students, and I am
indebted to my colleagues J.M. Howl and P.R. Masan for helping to
see the cofirse through its first two years while protecting the '
students from my worst excesses. I have been fortunate in the help
of Mary Mills who patiently typed her way through innumerable drafts,
and Linden Rige has shown incredible tolerance in carefully preparing
the final version in the face of many changes and delays.

1976 . e -~ D. M. Monro
: Imperial College, London

o

The Statements of FORTRAN

. Items in square brackets are optional

iv = integer variable ivc = integer variable or constant sn = statement number
list = list of variable names subject to differing subscripting rules, see text

iunit = unit number, unsigned integer variable or constant

variable = expression

ASSIGN sn TO iv

BACKSPACE /unit

BLOCK DATA

CALL name {[(arguments)]

COMMON ([/name/] list [/namellist . . .].
COMPLEX /ist

CONTINUE : ’
DATA /ist/values/{.list/values/] . . .}
DIMENSION /jst

DO sn iv = jve, ive [ive)

DOUBLE PRECISION /ist

END

END FILE /unit

ENTRY name [(dummy arguments)]
EQUIVALENCE (/ist) [.(/ist) . . .]
EXTERNAL name [.name . . .)
FORMAT (specification)

FUNCTION name (dummy arguments)
GO TO sn :
GO TO (sn [,sn...]). iv

GO TO jv(sn [,sn...])

IF (arithmetic expression) sn, sn. sn

IF (/ogical expression) statement
INTEGER /ist

LOGICAL /ist

NAMELIST /name/list [[namellist . . .]
PRINT sn [.list]

PUNCH sn [,/ist]

READ (iunit, sn) [list)

READ (/unit, name)

READ (iunit) list

REAL /ist

RETURN

REWIND junit

sTOP

SUBROUTINE name [(dummy arguments))
WRITE (iunit, sn) (list]

WRITE (iunit, name)

WRITE (iunit) list

FOR MAT‘ Specifications

w = field width' n = no. 6f items * d = no. of decimal places

nw integer nFw.d réal without exponent

nEw.d real with exponent nDw.d double precision (with exponent)
nLlw Jogical nOw octal n2w hexadecimal

wH literal nAw alphanumeric wX spaces

[newline n(...)repeated group nP scaling

Chapter 2, 6
Chapter 3
Chapter 7
Chapter 5
Chspter 4
Chapter &
Chapter 6
Chapter 3
Chapter 5
Chapter 5
Chapter 3
Chapter 6
Chapter 2
Chapter 7
Chapter 4
Chapter b
Chapter 6
Chapter2,3,4,6,7
Chapter 4, 6
Chapter 2
Chapter 3
Chapter 3
Chapter 3
Chapter 3, 6
Chagter 6
Chapter 6
Chapter 7
Chapter 7
Chapter 7
Chapter 2, 6, 7
Chapter 7
Chapter 7
Chapter 6
Chapter 4
Chapter 7
Chapter 2
Chapter 4
Chapter 2,5, 7
Chapter 7
Chapter 7

BRSNS

Contents

PREFACE

CHAPTER 1 ~ INTRODUCTION

1 About FORTRAN 2 About Computers 3 Interactive Computing and Time
Sharing 4 Batch Processing -5 How to Use This Book

CHAPTER 2 - CALCULATIONS IN FORTRAN-

-1 Introduction 2 Constants, Variables and Arithmetic 3 Expressions
and Arithmetic 4 Arithmetic Statements 5 Output of Simple Results -
the WRITE and FORMAT statements 6 Structure of Simple Programs
7 Problems 8 Input of Numbers - the READ statement 9 Problems
,10 Repeating Calculations - the GO TO statement 11 Built-in
Functions 12 Supplementary Problems

"CHAPTER 3 - PROGRAM ORGANIZATION AND CONTROL

1 Introduction 2 Making Decisions - The Logical IF Statement
,3 Example - Method of False Position - Flow Diagrams 4 More FORMAT
Facilities -~ printing captions and repeating the specification

.5 Convenient but Nonstandard FORMAT facilities 6 Reals, Integers,’
and IF Statements 7 More Complicated Logical Expressions 8 Looping
with the IF Statement 9 Automatic Loop Control - the DO and CONTINUE'
statements 10 An Aside - more about FORMAT - slashes and commas
11 Other Forms of Control - the arithmetic IF, assigned and computed
GO TO 12 Supplementary Problems

CHAPTER 4 ~ FUNCTIONS AND SUBROUTINES

" 1 Introduction 2 Arithmetic Statement Functions 3 Function Sub-
programs - the FUNCTION and RETURN statements 4 Another FORMAT
Specification ~ the E field §& Subroutine Subprograms - the
SUBROUTINE and CALL statements 6 Additional Entries to Subprograms -
the ENTRY statement 7 Supplementary Problems

CHAPTER 5 - ARRAYS, SUBSCRIPTS AND STORAGE

1 Introduction 2 Subscripted Variables - tﬁé DIMENSION statement

3 Defining Values in Advance - the DATA statement 4 Printing of
Arrays - implied DO loops 5 Storage Arrangements - the EQUIVALENCE
statement 6 The Use of Arrays in Subprograms 7 The COMMON Area

8 Declarations of Type - REAL and INTEGER 9. Recommended Order of
Statements 10 Supplementary Problems

CHAPTER 6 - SPECIAL VARIABLE TYPES

1 Introduction 2 Logical Variables, Constants, and Expressions

3 Double Precision Variables, Constants, and Expressions ‘4 Complex
Variables, Constants, and Expressions 5 Rules Governing Combination
of Variable Types 6 The Use of EXTERNAL Variables. -

,CHAPTER 7 - INPUT ~ANvD OuUTPUT

1 Introduction 2 Formatted READ and WRITE Statements 3 FORMAT
Specifications (a) Integer (b) Real without exponent - F (c) Real
with exponent - E (d)vComplex Numbers (e) Double Precision Numbers -
D (f) Logical Values - L (g) Octal Fields - O (h) Hexadecimal
fields - 2 (i) Alphanumeric fields and data - A or H (j) theral
messages (k) Blank ‘fields - X (1) Punctuation by commas
(m) Punctuation by brackets - repetltlons (n) Punctuation by
slashes - new lines (o). Scale factors - P’ (p) Records and unit
numbers (q) Carriage control (r) Object time FORMAT 4 FORMAT
Free Input and Output 5 Graph Plotting. 6 Manipulation of Input and
Output Devices 7 Unformatted Input and Output 8 The NAMELIST Facility

vi

-~

1. Introduction -~ .

\

1 About FORTRAN

Those who'invent acronyms have had more practice since the phrase -
FORmula TRANslation was compressed into FORTRAN. It began as a
simpler, more restricted language but in its present form, known as
FORTRAN 1V, it has settled down as the most common general purpose
vehicle for data processing and numerical calculation in science and
engineering. Many special purpose languages have sprung up ideally
suited to a bewildering variety of tasks, but none prgsénts any .
particular difficulty in learning after FORTRAN. Therefore FORTRAN
is the one computer language most worth knowing outside the commercial
field (where COBOL prevails). '

Experience with FORTRAN has naturally brought an awareness of its
shortcomings and no effort is made here to conceal these. One
important consideration that reveals itself through trying to learn
it and later in helping others is that FORTRAN is not the ideal
language for a complete beginner because a large body of complex .
rules applies to even the simplest program. In this connection a
special purpose language to mention here is BASIC because it is worth
learning first. BASIC enables beginners to assimilate the elementary
principles of programming with a minimum of fuss and is designed to
facilitate transition to the greater rigour of such languages as
FORTRAN. This course has been made general enough for any student
of FORTRAN with a suitable mathematical background, but it is
particularly suitable to follow BASIC.

2 About Computers

Man has invented many tools which strengthen his. powers, and
computers are no exception because of their capability for automating
the repetitive calculations which earlier inventions have npecessitated.
Every computer is a machine endowed with a repetoire of simple
instructions which it obeys blindly as a result of human guidance.
The job of organizing these instructions into a task for the machine
is called programming. The finished list of instructions is called

.a program and is expressed on paper and to the machine in a programming

language, often FORTRAN. The" computer has no way of knowing whether

2 Introduction

the instructions given to it make sense or are what the programmer
really intended. It irterprets them quite literally anhd could easily
get stuck repeating thd same meaningless operation until stppped by”
human intervention or a timing circuit. The person who is trying to
get a program to work cbrxrectly is capable of many mistakes but
(usually) knows his intemtions and can deduce what is going wrong.
Much of the effort in cogouter programming is devoted to finding
errors in the program.

The machine normally mal&s no errors but also exercises no judge-
ment. Beginners are quick to blame the computer for making errors
when they cannot find them themselves. Be warned, however, that in
your first week you will lose count of your own errors but you may
never run out of fingers for counting mistakes attributable to the
machine itself.

Provided a computer is instructed properly it can outdistance'in

seconds or minutes a human lifetime of hand calculation. This is
why computers have had a profound effect on'a bewildered soc1ety._
The effects are not always beneficial, particularly if a decision “to
"computerize" is taken in ignorance of the large overheads and highly
specialized skills involved. But computers can add a million numbers
a second and most can multiply nearly as rapidly with impressive ‘
precision. A computer can store thousands or tens of thousands of;
results in its memory and recall any one of them in a microsecond.
It can be programmed to examine its results and make a decision and
so can be given a superficial appearance of intelligence - but this
intelligence originates with the human programmer and the computer's
mistakes nearly always have the same origin.

A computer system is much more than a machine which does calculations.
To be useful it must be surrounded by devices which feed it inform-
ation and it must be given programs to guide it through its tasks.

The person learning FORTRAN may communicate through a terminal with
a keyboard for him to transmit information to the computer and a
printer for its responses. Perhaps less fortuynately he may have to
use a "batch service" to which punched cards are submi tted and from
which the results are returned later.

A computer could have connected to it readers and punches for cards
and paper tape, magnetic tape transports, lineprinters, and magnetic
disk storage. All these devices provide for input (to the computer)
and output (from the computer) of information. Each device has a
"driver" program to control it, and there will be a supervisor for
the drivers (and probably a program to monitor ‘the supervisor). All
these devices and programs make up ,a computer system before FORTRAN

‘wooy xa3ndwo) BY3 SITqRyuT Snyjezedde Jo Aexxe.buvaspriMag v ‘[1-b1g

3

o
~ 0 .@ IV

\

About Computers

= (eeXo] 000000 coocoocoag @@
000000 O @@@ J [1ad

AJOWT . YOSSTI0¥d

»

WIAIYQ

20w RL oW) | FMMQYYH .

JUNNYG INC

4 Introduction

is taken into consideration and certainly before the "user" arrives
to try his program provided of course that 'they' will let him get
near it (Fig. 1).

The computer itself will not understand FORTRAN - the language it
takes instructions from is a rather nasty series of numbers. - There-
fore a translation program or "compiler" is needed which -takes a
FORTRAN program and converts it to machine language. Because of the
many facilities of FORTRAN and the need to check the grammar of a
FORTRAN program, the compiler is quite a large program. Thus it
takes many programs to run a FORTRAN program and the computer system
that supports a FORTRAN programmer is an imposing collection of
machinery ('hardware') and programs ('software'). The beginner is
protected to an extent from any need for detailed knowledge of all
this, but FORTRAN is a language that enables the expert to expand
into many of the facilities of the system.

3 Interactive Computing and Time Sharing

Early computer systems were organized tc deal with one program at

a time, and programs were normally presented to the system in groups
or 'batches' which the machine ‘processed one after the other. . The

- programmer submitted his program to a computlng service which ran it
for him and returned the result some time later. FORTRAN like any.
other language can be run in this way, and the majority of computing
is still done in batches. The disadvantage of batch processing for
small programs and for learning is that the: 'turnaround' time is
unlikely to be less than a few hours and is more llkely to be
measured in days. i

An interactive computer system puts the programmer into direct
communication with the computer, usually through a typewriter terminal
Therefore the turnaround time for developing’ programs and finding and
correcting errors is reduced to seconds. The program itself can ke
written so that the programmer gives it -information while tie computer
is executing it and so he can control the steps of the calculation
as it progresses. When FORTRAN is run in an interactive system,

_‘programs can- .be developed rapidly and tested and corrected from a
terminal. The learrding-process is both shortened and made more
thorough because the rapid resporise of the computer .and the
straightforward nature of the language .work in the student's favour
and encourage experlmentatlon. :

An interactive computer system can bé in one of two modes of,
operation as.seen by the programmer. These modes are 'program
definition' and ‘program execution' ahd are dlstlﬂgUlShed by

Interactive Computing and Time Sharing 5

Programmer incontrol

?Mi}}

Definition Mode - the progiammer is entéring. editing or

correcting his program
., - Computer in control
— [ComATER |

J <l NFORMATION] | §¢§ === (9‘,

T =) 090
i FZL“IZZ] |

/i?esponses(mly/fprogrameg),} i __C.ﬁ*:_:::l i
l .

)|

ExecutlonMode thecomputensexecutmgapmgram '

Fig.1.2. Timesharing Qivides into two modes of interaction.

6 Introduction

whether the programmer or the computer is in.control of events as in
Fig. 2. T the program definition mode the programmer will be
creating, editing and correcting his program and is himself in control.
The main flow of information is from the terminal to the computerx and
any response bty the computer is a result of the programmer's activities.
He can enter commands to the system, and the effect of some of these
commands is to transfer control to the computer. If this is done,

the system will change to execution mode and the user will be required
to respond only if the program has made specific provision for input
from the terminal. The main flow of information will be from the
computer to the terminal, and the programmer normally will regain
control when the program is finished, although he can stop execution
manually if necessary. ’

Time sharing is a means of hakingvthe resources of one computer
system serve the needs of many users at the same time. The computer
does not do several things at once, but it can be made to jump from
one task to another so rapidly that the individual user is not aware
of any long delays. Therefore interactive computing can be carried
out at many terminals 'simultaneously'. Large time sharing systems
can service a hundred or more terminals all using a variety of
languages to perform different operations, and also can do batch and
other work at the same time.

'

4 Batch Processing

The most likély form of computer service is the batch processing
arrangement which, although not ideal for learning, is efficient
for the production work which accounts for most computer usage. In
this kind of bureau, programs are submitted at a central site and are
fed to the computer in batches.. Some time later, when the machine
has cémpleted the batch and moved on to another, the printed results
are returned together with the program which will most often have to
be corrected and .submitted again. The ™turnaround" in a batch service
is at best a few hours and often ovérnight even for small jobs and
therefore the progress of a person learning FORTRAN can be badly
. hampered. A service like this involves human intermediaries who
organize the input, sort the output and deal with hundreds of moaning
users. The user himself is likely to develop a somewhat jaded view
of . the reception department, It should be remembered that
delays.in processing are unlikely to'be the fault of the unfortunates
who staff the reception area; many computers seem to have an uncanny
ability to develop sick headaches at the worst possible moment.

Some enlightened computer centres mitigate the defays of ‘batch
processing by granting the user himself access to enough equipment to
run his own job, and this does tend to create satisfiédAcustomers.

-

How to Use This Book 7

Once the initial shock at the idea of allowing users to not only

see but touch equipment has passed, it is usually found that a well
organized "hands-on shop" in which people can read in their own cards
and tear off their own olitput is a success, if untidy at times.

Almost all batch wofk is done from punched_cards;land the deck of
cards that makes up a "job" must contain not only all of the FORTRAN
program, but also all of the necessary directions to the computer
system to make it run,’and any data that the program is intended to
process. The directions, called "control cards" or "job control
language" vary widely between different computers as does the manner
of organizatiqn of the deck of cards. Typically control cards will
be needed to initiate translation or "compilation" of the original
source FORTRAN into machine language, to load this "compiled™ program,
or "object code" into the computer, search the system libraries for
missing bits @f program, and set it running, or "exequting”. A
complicated job may involve many more operations.

S How to Use This Book

The course is intended to be followed from the beginning in order,
doing as many problems as possible. It is necessary to have a means
of rurining FORTRAN programs on a computer, ideally by access to an
interactive system; if only‘batch processing is available it will
take longer. If possible a source of expert advice should be avail-
able, about FORTRAN because people who have made all the mistakes
already spot them more quickly (this is called "experience"), and
about the computer system which is likely to give more trouble than
the FORTRAN at first,. The supplementary problems at the end of most
chapters are more demanding and should be regarded as optional.

Each section should be read through before problems associated
with it are tried, and even the most tentative outline solution
to a problem will save time spent on the computer. ' It is tragic to
watch year after year the amount of time wasted in reading the
maferial for the first time and trying to think out the solutions at
the keyboard; the same people often claim to have had insufficient
access.. :

. A good introduction to practical computing is formed by Chapters
2 to 5, each of them requiring about ten hours of real work. If it
takes less, so much the better, but if it requires more then either
preparation and organization are inadequate or the level of the
course i's inappropriate to the particular student's background and

interest. -

2 Calculations in Fortran

i Introduction

A computing machine is directed by a series of instructions
telling it exactly what to do at each stage of a calculation; a set
of these instructions is:called a program. Programming languages
are used to express instructions in a way which is independent of
the minute details of operation of the computer. FORTRAN IV is
called a "high level" lanqguage because it expresses calculations in
terms familiar to humans rather than machines. A FORTRAN program
uses common English terms and mathematical operations. However,
because the communication is with a computer, the instructions$ given
must be precise and no amblguitxes can be allowed.. Therefore the
grammar of FORTRAN, like any other computing language, is
constrained by a precise set of rules which control what grammatical
constructions or "syntax" the machine will "understand", i.e. accept
as valid instructions. These rules may make FORTRAN look
complicated at first, but they are there for good reasons, and
experiernice provides an easy fluency with the language because the
rules make sense. This is one of the reasons why FORTRAN is the
universal language of scientific calculation and has endured as such
for many years. 1In this chapter enough basic grammar and
construction is introduced to allow simple calculations to be
undertaken, although some of the material will have to be elaborated
on later.

- A very simple example of a complete lelf-containedAprogram serves
to introduce the language and point out some of the features of

construction. The following program calculates and prints the value

of 1 using the fact that tan(mn/4) = 1.0 :

PIE=4.9*ATAN(1.0)
WRITE(6,20)PIE

29 FORMAT(1X,F10.5)
STOP
END

Introduction 9

Undoubtedly there will be things in the program that look familiar,
and others that are partially self—explanatory. FORTRAN uses words
of English and some recognizable mathematical notation, but- it also
has very strict rules of punctuation.

The program structure in FORTRAN is straightforward enougn. Fach
line of the program is called a "statement" of FORTRAN, and somn~
lines include statement numbers, as does statement 20 in this
example. When a FORTRAN program is executed by a computer, the
order of the statements dictates the order in which instructions
given in the program are obeyed by the computer. So the given
example is executed line by line just as one would read it; here
the statement number itself does not affect the order.

This program contains several kinds of statements and other
features which must all be understood before any program can be
attempted.

The arithmetic statement
PIE=4 .¢*ATAN(1.9)

may be recognised as a replacement or assignment statement for the
variable PIE and * represents the multiplication operation. Rt why
are the decimal points given explicitly in the constants 4.0 and 1.0?
If they were left out the program would fail - some computers would
reject it outright while others would produce the dnswer 0. Also
important to a certain extent is the spelling of the variable PIE;
were it called LIE instead a different result (3) would be produced
by this statement.

The output -statement
WRITE(6,2¢)PIE
and its associated FORMAT
20 FORMAT(1X,F19.5)
are involved with .the printing of the result. But what does it .1l
mean? In this particular example the value of PIE is written onic
unit number 6 in a format of one space followed by the number rinht

justified in the next 10 spaces with five places of decimals <hown.
This is not as complicated as it sounds and will be fully explained.

