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Preface

Fixed point theory is a powerful and fruitful tool in modern mathematics and may
be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point
theory has been a flourishing area of research. In this book, we introduce topological
fixed point theory for several classes of single- and multivalued maps. The selected
topics reflect our particular interests.

The text is divided into seven chapters. In Chap. 1, we present basic notions
in locally convex topological vector spaces. Special attention is devoted to weak
compactness, in particular to the theorems of Eberlein—-Smulian, Grothendieck, and
Dunford—Pettis. Leray—Schauder alternatives and eigenvalue problems for decom-
posable single-valued nonlinear weakly compact operators in Dunford—Pettis spaces
are considered in Chap. 2. In Chap. 3, we present some variants of Schauder, Kras-
noselskii, Sadovskii, and Leray—Schauder-type fixed point theorems for different
classes of weakly sequentially continuous (resp. sequentially continuous ) operators
on general Banach spaces (resp. locally convex spaces). Sadovskii, Furi-Pera, and
Krasnoselskii fixed point theorems and nonlinear Leray—Schauder alternatives in the
framework of weak topologies and involving multivalued mappings with weakly
sequentially closed graph are considered in Chap.4. The results are formulated
in terms of axiomatic measures of weak noncompactness. In Chap. 5, we present
some fixed point theorems in a nonempty closed convex of any Banach algebras or
Banach algebras satisfying a sequential condition (P) for the sum and the product
of nonlinear weakly sequentially continuous operators. We illustrate the theory
by considering functional integral and partial differential equations. The existence
of fixed points and nonlinear Leray—Schauder alternatives for different classes of
nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive,
strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach
space is discussed in Chap. 6. We also discuss the existence of nonlinear eigenvalues
and eigenvectors and surjectivity of quasi-bounded operators. In Chap. 7, we present
some approximate fixed point theorems for multivalued mappings defined on
Banach spaces. Weak and strong topologies play a role here and both bounded
and unbounded regions are considered. A method is developed indicating how to
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viii Preface

use approximate fixed point theorems to prove the existence of approximate Nash
equilibria for noncooperative games.

We hope the book will be of use to graduate students and theoretical and applied
mathematicians who work in fixed point theory, integral equations, ordinary and
partial differential equations, game theory, and other related areas.

Sfax, Tunisia Afif Ben Amar
Galway, Ireland Donal O’Regan
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Chapter 1
Basic Concepts

In this chapter we discuss some concepts needed for the results presented in this
book.

1.1 Topological Spaces: Some Fundamental Notions

Let X, Y be arbitrary sets. We use the standard notations x € X for “x is an element
of X,” X C Y for “X is a subset of Y. The set of all subsets of X is denoted by P(X).
Let {X,};c; be a family of sets. For the union of this family we use the notation (_J X;
i€l
and for intersection the notation () X;. If I = N we have a sequence of sets and we
45 i€l "
use respectively the notations | J X, and (7] X;,. A mapping f of X into Y is denoted

by f : X — Y. The domain 0'% flis X andnlhle image of X under f is called the range
of f. For any A C X, we write f(A) to denote the set {f(x) : x € A} C Y. For any
BCY.f'(By={xeX : f(x) e BL.Iff: X —> Yand g : ¥ —> Z are mappings,
the composition mapping x —> g(f(x)) is denoted by g o f. We denote the empty
set by 0.

Definition 1.1. Let X be any nonempty. A subset 7 of P(X) is said to be a topology
on X if the following axioms are satisfied:

1. X and @ are members of 7,
2. the intersection of any two members of 7 is a member of T,
3. the union of any family of members of 7 is again in T

We say that the couple (X, 1) is a topological space. If 7 is a topology on X the
members of t are then said to be t-open subsets of X.

© Springer International Publishing Switzerland 2016 1
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2 | Basic Concepts

Definition 1.2. Let (X, 7) be a topological space.

1. The closure of a subset A of X, denoted by A is the smallest closed subset

containing A.

The interior of a subset A of X, denoted by A°, is the largest open subset of A.

The boundary of a subset A of X, denoted by 9A, is the set A \ A°.

A subset D is dense in a subset A if D C A C D.

A limit point or a cluster pointer or an accumulation point of a subset A is a point

x € X such that each neighborhood of x contains at least one point of A distinct

from x.

6. A subset A of X is compact if, for each open covering of A, there exists a finite
subcovering. The set A is relatively compact if A is compact.

7. The space is locally compact if, for each x € X, there is a neighborhood V, of x
such that V, is compact.

8. A subset A of X is countably compact if, for each countable open covering of A,
there is a finite subcovering.

W s L9 b

Definition 1.3. A direct set is a nonempty set / with a relation < such that

l. a <aforallo €1,
2. ifa <Band B < y,thena < v,
3. for each pair o, B of elements of 7, there is y, g such that o < y, g and B < y, p.

Definition 1.4. Let (X, 7) be a topological space and / be a directed set. A function
x from I into X is said to be a net in X. The expression x(i) is usually denoted by x;,
and the net itself is denoted by {x;};e;. The set I is the index set for the net.

Definition 1.5. Let (X, 1) be a topological space. A net {x;};e; is said to be
convergent to a point xx € X if for any neighborhood V of x., there exists an index
iy € I such that for any i € [ satisfying iy < i, we have that x; € V. If a net {x;};¢/
is convergent to x«, we write ]llerP Xy =X

Remark 1.1. Tt is known that a subset A of X is closed, if and only if for any net
{x:}ies in A the condition ljer?xi = xp implies xy € A.
!

Definition 1.6. Let (X, 1), (Y, r2) be topological spaces and letf : X — Y be a
mapping. We say that f is continuous at a point x € X, if for each 7,-neighborhood
Vofy = f(x), f~'(V) is a ty-neighborhood of x. If f is continuous at any x € X,
then in this case we say that f is continuous on X.

Definition 1.7. Let (X, 7) a topological space:

1. The space X is Ty if for each pair of distinct points in X, at least one has a
neighborhood not containing the other.

2. The space X is Tj if, for each pair of distinct points in X, each has a neighborhood
not containing the other.

3. The space is T, or Hausdorff or separated if, for each pair of distinct points x and
¥, there are disjoint neighborhoods V, and V, of x, and y, respectively.
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4. The space is T3 is regular if it is 7} and, for each x and each closed subset F not
containing x, there are disjoint open sets U and V suchthatx € Uand F C V.

5. The space X is T, L or completely regular or Tychonoff if it is Hausdorff and, for
each x and each closed F of X not containing x, there is a continuous function
@ : X — [0,1] such that @(x) = 0 and a(y) = 1 for each y € F. In other
words, X is completely regular if C(X, [0, 1]) separates points from closed sets
in X. Since singletons are closed in X, we deduce that C(X, [0, 1]), also separates
points in X.

6. The space is Ty or normal if it is Hausdorff and, for each disjoint closed subsets
F,,F, C X, there are disjoint open subsets V| and V> such that F, C V) and
F, C Vs,

Lemma 1.1 (Urysohn). If Fy and F, are disjoint closed sets in a normal space X,
then there is a continuous function « € C(X, [0, 1]) such that @ = 0 on F, while
o = 1onFs.

Theorem 1.1 (Tietze’s Extension). If F is a closed subset of a normal space X,
then each continuous function @ € C(F,[0, 1]) extends to a continuous function
@ € C(X,[0,1]) on all of X.

Remark 1.2. From Urysohn’s lemma, every normal space is completely regular.
Thus, metric spaces and compact Hausdorff are completely regular.

Proposition 1.1. Let X be a completely regular space. Let F, F, be disjoint subsets
of X, with F\ closed and F, compact. Then there exists a continuous function o :
X —> [0, 1] such that « = 0 throughout F\ and @ = 1 throughout F.

1.2 Normed Spaces and Banach Spaces

All linear spaces considered in this section are supposed to be over a field K, which
can be R or C.

Definition 1.8. Given a linear space X and a topology 7 on X. X is called a
topological vector space if the following axioms are satisfied:

(1) (x,y) —> x + yis continuous on X x X into X.
(2) (A,x) — Axis continuous on A x X into X.

Remark 1.3. Note that we can extend the notion of Cauchy sequence, and therefore
of completeness, to a topological vector space : a sequence x, in a topological vector
space is Cauchy if for neighborhood U of 8 there exists N such that x,, — x, € U for
allm,n > N,

An important class of topological vector spaces is the class of normed vector
spaces.
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Definition 1.9. Let X be a linear space. A norm on X is a map |.|| : X — [0, 00)
such that

l. x| =0 &< x=0 (x € X),
2 JAxl = Al (A eKxeX),
3olx+yl = lxl+ vl Gy eX).

A linear space equipped with a norm is called a normed space.

Proposition 1.2. Let (X, |.||) be a normed space. Then the mapping
d:XxX —[0,00), (x,y) —> [x =y

is a metric. We may thus speak of convergence, etc., in normed spaces.

Remark 1.4. Let (X, |.||) be a normed space. The sets B(6,1) = {x € X : [lx|| < 1}
and By (0) = {x € X : |x|| < 1} are the open unit ball and the closed unit ball of X,
respectively.

Definition 1.10. A normed space X is called a Banach space if the corresponding
metric space is complete, i.e., every Cauchy sequence in X converges in X.

Now, we discuss some important properties of the first and second duals of a
normed space.

Definition 1.11. The topological dual X* of a normed space (X, ||.||) is a Banach
space. The operator norm on X™* is also called the dual norm, also denoted by ||.|.
That is

¢l = sup |p(x)| = sup [@(x)].

llxll=<1 [lxll=1

The topological dual of X’ is called the second dual (or the double dual) of X and
is denoted by X**. The normed space X can be embedded isometrically in X** in a
natural way. Each x € X gives rise to a norm-continuous linear functional

(@) = ¢(x) foreach ¢ € X*.

Lemma 1.2. For each x € X, we have |X|| = ||x|| = ”m”ax |p(x)|, where ||| is the
¢li=1
operator norm of X as a linear functional on the normed space X*.

Corollary 1.1. The mapping x —> X from X into X** is a linear isometry (a linear
operator and an isometry), so X can be identified with a subspace X of X**.

When the linear isometry x — X from a Banach space X into its double dual
X** is surjective, the Banach space is called reflexive. That is, we have the following
definition.

Definition 1.12. A space X is called reflexive if X = X = X**.
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1.3 Convex Sets

We start with some basic definitions and a few observations.

Definition 1.13. Let X be a linear space. A subset S of X is said to be convex if and
only if Ax + (1 — 1)y € S forevery x,y € S and A € [0, 1]. That is, a convex set is
one that contains all points on any “line segment” joining two of its members.

Lemma 1.3. In any linear space

1. The sum of two convex sets is convex

2. Scalar multiples of convex sets are convex

3. A set S is convex if and only if aS + BS = (a + B)S for all nonnegative scalars
o and B.

4. The intersection of an arbitrary family of convex sets is convex.

5. In a topological vector space, both the interior and the closure of a convex set
are convex.

Definition 1.14. Let S be any set in a linear space X, and let S be the class of all
convex subsets of X that contains S. We have S # @ since X € S. Then, [ (S is a
convex set in X which, obviously, contains S. Clearly, this set is the smallest (that
is, © — minimum) subset of X that contains S-it is called the convex hull of S and

denoted by co(S).
Remark 1.5. S = co(S) iff S is convex.

Note

n n
co($) = {) _Aixi: A 20 and x; € S forall i<nand Y A =1}

i=1 i=1

1.3.1 Cones

Definition 1.15. A nonempty subset C of linear space X is called a convex cone if
it satisfies the following properties:

1. Cis a convex set.
2. From x € C and A > 0, it follows that Ax € C.
3. From x € C and —x € C, it follows that x = 0

A cone can be characterized by 3) together with
x,yeC and A,u >0 imply Ax+ uy e C.

Examples 1.1. 1. The set R’ of all vectors x = (£,...,£,) with nonnegative
components is a cone in R",
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2. The set C of all real continuous functions on [a, b] with only nonnegative values
is a cone in the space Cla, b].

Remark 1.6. The set C C IP(1 < p < o), consisting of all sequences (&,),>1, such
that for some a > 0

oo

Z|Sn|p <a

n=1

is a convex set in [P, but obviously, not a cone.

1.3.2 Ordered Vector Spaces

Definition 1.16. If a cone C is fixed in a linear space X, then an order can be
introduced for certain pairs of vectors in X. Namely, if x —y € C for some x,y € X
then we write x > y or y < x and say x is greater than or equal to y or y is smaller
than or equal to x. The pair (X, C) is called an ordered vector space or a vector
space partially ordered by the cone C. An element x is called positive, if x > 0 or,
which means the same, if x € C holds. Moreover

C={xeX: x>0}

Remark 1.7. We consider the linear space R? ordered by its first quadrant as the
cone C = ]Ri. Considering the vectors x = (1,—1) and y = (0, 2), neither the
vector x—y = (1,—=3) nory—x = (—1, 3) is in C, so neither x > y nor x < y holds.
An ordering in a linear space, generated by a cone, is always only a partial ordering.

It can be shown that the binary relation > has the following properties:

x> x Yx € X (reflexivity).

x>yandy = zimply x > z (transitivity)
x>yanda > 0, > 0, € R, imply ax > y.
x; =y andx; > yp imply x; +x2 2 y; + y2.

S

Example 1.1. In the real space Cla, b] we define the natural order x > y for two
functions x and y by x(r) > y(z),Vt € [a,b]. Then x = O if and only if x is a
nonnegative function in [a, b]. The corresponding cone is denoted by C...
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1.3.3 Vector Lattices

Definition 1.17. An ordered vector space X is called a vector lattice or linear
lattice or Riesz space, if for two arbitrary elements x, y € X there exist an element
z € X with the following properties:

l.x<zandy <g,
2. iftreXwithx <tandy <t,thenz <t.

Such an element z is uniquely determined, is denoted by x V y, and is called the
supremum of x and y (more precisely: supremum of the set consisting of the
elements x and y)

In a vector lattice, there also exists the infimum for any x and y, which is denoted
by x A y.

Definition 1.18. A vector lattice in which every nonempty subset X that is order
bounded from above has a supremum (equivalently, if every nonempty subset
that is bounded from below has an infimum) is called a Dedekind or a K-space
(Kantorovich space).

Example 1.2. The space Cla, b] is a vector lattice.

Remark 1.8. For an arbitrary element x of a vector lattice X, the elements
Xy =xvl, x_ = (—x) Vv and |x| = xy + x_ are called the positive part,
negative part, and modulus of the element x, respectively. For every element x € X
the three element x4, x_, |x| are positive.

1.3.4 Ordered Normed Spaces

Definition 1.19. Let X be normed space with the norm |.|. A cone X4 C X is
called a solid, if X4 contains a ball (with positive radius), or equivalently, X4
contains at least one interior point.

A cone X+ is called normal if the norm in X is semimonotonic, i.e., there exists
a constant M > 0 such that

0sx=y= |x| =Mly.|

A cone is called regular if every monotonically increasing sequence which is
bounded above
X2 =...2x% =5 <z

AR

is a Cauchy sequence in X. In a Banach space every closed regular cone is normal.
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Examples 1.2. 1. The usual cones are solid in the space R, Cla, b], but in the spaces
LP([a,b]) and IP(1 < p < o0) they are not solid.

2. The cones of the vectors with nonnegative components and the nonnegative
functions in the spaces R", cg, # and L7, respectively, are normal.

3. The cones in R", ” and L/ are regular.

1.3.5 Normed Vector Lattices and Banach Lattices

Definition 1.20. Let X be a vector lattice, which is a normed space at the same
time. X is called a normed lattice or normed vector lattice, if the norm satisfies
the condition

Ix| < |y| implies x| < |yl Vx.y€X (monotonicity of the norm).

A complete (with respect to the norm) normed lattice is called a Banach lattice.
Example 1.3. The spaces Cla, b], ¥ and I’ are Banach lattices.

Definition 1.21. Let S be a subset of a normed space X. The closed convex hull
of § denoted by to(S), is defined as the smallest (that is, O —minimum) closed and
convex subset of X that contains S.

Let X be a normed space. Note
co(S) ;= m{A € P(X) : A isclosed in X, itisconvex,and S C A}.

(Note, co(@) = @.)
Clearly, we can view ¢o(.) as a self-map on 2%, Every closed and convex subset
of X is a fixed point of this map, and co(S) is a closed and convex set for any S € X.
We have this following useful formula

Proposition 1.3. Let X be a normed space. Then
co(S) = co(S) Jorany § C X.
Proof. Since co(S) is convex, it is a closed and convex subset of X that contains S,

s0 ¢o(S) € co(S). The D part follows from the fact that co(S) is a closed set in X
that includes co(S). [ |



