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PREFACE

This book was written with two principal objectives for the students in mind:
{1) 1o acquire a precise understanding of the matrix displacement method
and its underlying concepts and principles; (2) to develop well-structured
programs for the analysis of skeletal structures by the matrix displacement
method. The displacement method was selected as the method of analysis
because of its intrinsic modularity, good numerical properties, and pop-
ularity—matrix and finite element analysis programs are generally based
on the displacement method. Structured programming is emphasized
because it provides a systematic process for creating correct programs.

Students have demonstrated that they can use. this programming knowl-
edge to write special-purpose programs, such as computer-aided design
programs and finite element programs.

The history of the development of matrix and finite element methods of
analysis, motivated by the computer, is traced, for example, by Martin and
Carey (1973). An overview of structured programming is provided in
Bates (1976).

In the first three chapters. the matrix displacement method is presented
in a form suitable for programming. The matrix displacement method is
extended to special topics in Chapter 4 and to space structures in Chapter 5.
Chapter 6 deals with the numerical solution of the system equations.
Chapter 7 is concerned with structured programming. Five appendices
include elementary methods of analysis, principles of analytical mechanics,
and mathematical tools.

Discrete element models are formulated in Chapter 1 by three approaches:
(I) by the solution of differential equations; (2) by force-deformation
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formulas, and (3) by the finite element method. The students should adopt
the approach that provides a natural link to their background. For example,
students who have had a course in the mechanics of deformable bodies but
who have not had a basic course in structural analysis should take the first
approach. Students who have completed a traditional junior-level course
in structural analysis might prefer the second approach, in which the
extensional force—deformation relation and the slope-deflection equations
are combined with conditions of equilibrium to construct the models for
truss and beam elements. The finite element approach is recommended for
students with a basic understanding of the matrix displacement method and
the principle of virtual work.

Chapter 2 paves the way for the matrix displacement method appro
priate for program development. The central task is the formulation o
conditions of compatibility and equilibrium without a visual reference t¢
the structure. For this purpose, the member code matrix is introducec
(Section 2.4). '

In Chapter 3 the matrix displacement method is formulated on the basis
of the member code matrix, and it is illustrated for continuous beams, frames,
and trusses. Joint loads and member loads are considered.

Chapter 4 illustrates how special features can be incorporated in the
matrix displacement analysis. The topics covered can be divided into three
groups: (1) the reduction of the degrees of freedom of an assembly of
elements by utilizing symmetry, by introducing internal constraints, and
by condensation; (2) the formulation of various element actions, such as
geometric imperfections, temperature changes, and unit displacements
imposed in the construction of influence lines by the Miiller-Breslau prin-
ciple; and (3) the formulation of assemblies with distinct elements, internal
releases, and distinct joint reference frames.

In Chapter 5, the matrix displacement method is extended to space
structures: space trusses, space frames, and grids. '

Chapter 6 is concerned with the numerical solution of the system equa-
tions. It includes a literature review of solution techniques, a discussion
of storage schemes for fixed and variable band matrices, the formulation
of direct solution methods with reference to special structural analysis
techniques for symmetric, positive definite band matrices, algorithms for
fixed and variable band solvers and references to computer programs, the
frontal solution technique and references to computer programs, and a
study of solution errors and methods of error detection and error control.

Chapter 7 is concerned with structured programming. It includes dis-
cussions of the aims of structured programming, control structures, methods

! In the presentation, the first two approaches are not separated. The beginning of the |
second approach, which is contained in the first approach, is stated in Section 1.1.
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of modularization, programming and coding languages, program correct-
ness, and program efficiency. The principles of structured programming
are applied in the design of a program for the matrix displacement analysis
of plane frames. The program structure is represented by a tree chart, and
the subprograms are described by structured flow charts (Nassi-
Schneiderman diagrams) with lists of input and output arguments. FORTRAN
77 and the FORTRAN version of the WATFIV compiler are used to illustrate
the coding of several subprograms.? A variety of programming problems
is presented that includes the completion of the frame program (coding
and testing) and extensions based on Chapters 4-6.

In Appendix A, fixed-end force formulas are presented for various
element actions. In addition, displacement-deformation relations are
derived that permit us to apply the moment-area method without a sketch
of the deformed configuration. In Appendix B, the slope-deflection method
is presented in a form that facilitates the transition to the matrix displace-
ment method. Appendix C provides a comprehensive treatment of
coordinate transformations. Appendix D is concerned with the principle
of virtual work. In Appendix E, the imposition of joint constraints at the
system level is addressed.

COURSE DESIGN. After the matrix displacement method in Chapters
1-3 has been studied, the remaining chapters can be studied in any order.
It is recommended, however, to follow the formulation of the matrix
displacement method in Chapter 3 with the program development as
indicated in the course structure. ’

Upon the completion of the frame program in Chapter 7, the study of -
the material in Chapters 4-6 can be integrated with desirable program
extensions.

The matrix displacement method and program development, w1th the
completion of the frame program as a class project, are appropriate for a
single semester of a senior-level course. In our quarter system, the textbook
forms the basis for two senior-level courses. In the first course, we teach the
matrix displacement method and, depending on the students’ progress, one
or two topics of Chapter 4. The second course is primarily concerned with
program development, the frame program class project, and the matrix
displacement analysis of space structures.

In designing and teaching a course, I find the two educational command-

"ments of A. N. Whitehead (1967) reassuring:

Do not teach too mat. subjects.
What you teach, teach thoroughly.

? The completed frame program is available to the teacher.
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CHAPTER

ONE

MATHEMATICAL MODELS OF ELEMENTS

1.1 INTRODUCTION

The prediction of the performance of a structure, which is the role of structural
analysis, is generally based on the analysis of mathematical models. The
accuracy of this prediction depends on how well the models approximate the
behavior of the structure. Accordingly, it is important to know the limitations
of the mathematical models used to represent the structure.

Insight into the limitations of a model can be gained from its construction.
The first step in the construction of a model is to select generalized displace-
ments, which define the configuration and determine the degrees of freedom
of the model. If a model has infinitely many degrees of freedom, it is called a
continnum model; otherwise it is called a discrete model. Next, the three
basic components of a model, the conditions of compatibility, the conditions
of equilibrium, and the constitutive law, are formulated. The synthesis of
these components yields the mathematical model.

The primary purpose of this chapter is to formulate discrete element models
for the analysis of skeletal structures by the matrix displacement method.
The chapter is organized as follows: After some brief discussions of structural
analysis and mathematical models (Sections 1.2 and 1.3), the concepts of
generalized displacements and forces are defined and illustrated (Section 1.4).
A modeling process is introduced and applied to obtain one-dimensional
continuum models representing axial, flexural, and torsional deformations
(Section 1.5). Discrete element models, which relate element-end displace-
ments to element-end forces through stiffness matrices, are formulated by
three approaches: (1) by the solution of continuum models (Sections 1.6 and
1.7); (2) by force-deformation formulas (Sections 1.6 and 1.7)—specifically,
the axial deformation formula, Eq. (1.72), the slope-deflection equations,
Egs. (1.86), and the torsional deformation formula, Eq. (1.91); (3) by the
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finite element method (Section 1.9). It is recommended to select the approach
that suits the students” background (see Preface). Special topics of discrete
elements are presented in Section 1.8.

1.2 STRUCTURAL ANALYSIS

Structural engineering is concerned with the planning, designing, and
building of structures. Structural analysis forms an integral part of the design
process. Its function is to predict the behavior of a structure in its environ-
ment. This prediction is usually based on mathematical models. Physical
models may be used if the reliability of a mathematical model is in doubt.

A model of a structure is defined as a mathematical representation of the
behavior of the. structure in its environment. It is expressed as an action
response relation. Actions are mathematical models of such environmental
factors as loads, prescribed displacements, and temperature changes. The
response is a measure of the change in state of the structure. It may be
expressed, for instance, by displacements, strains, stresses, and forces.

In essence, structural analysis is concerned with the specification of
actions, the construction of models of the structure, and the determination
of the response to the imposed actions (Figure 1.1).

1.3 MATHEMATICAL MODELS

A mathematical model of a structure has three distinct components that
represent signficant features of the structure: conditions of compatibility,
conditions of equilibrium, and constitutive laws.

The conditions of compatibility reflect geometric properties of a structure,
such as continuity of deformations of elements and assemblages of elements,
and boundary constraints. In addition, restrictions on deformations are
frequently imposed to reduce the three-dimensional structure to a two- or
one-dimensional model. For example, the assumption concerning plane
sections in the elementary beam theory (Crandall, Dahl, and Lardner, 1978
Freudenthal, 1966; Popov, 1968; Stippes, Wempner, Stern, and Beckett,
1961) transforms the beam into a one-dimensional element.

The conditions of equilibrium express the state of balance of a structure
at rest. Newton's law or the principle of virtual work can be applied to

FIGURE 1.1 Analysis process

Action Model Response
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formulate the conditions of equilibrium. If the structure is in motion, the
conditions of equilibrium are replaced by the laws of motion.

The constitutive laws model the behavior of materiais. For example,
Hooke’s iaw is based on the idealization of a linearly elastic material.

It is important to keep in mind that mathematical models of structures
represent idealizations. The results obtained from the analysis of the model
can be valid only to the extent that the model approximates the behavior of
the stucture.

1.4 GENERALIZED DISPLACEMENTS AND FORCES

Generalized Displacements

The formulation of a mathematical model of a structure centers on the
selection of parameters that define the configuration of the model. The
configuration is characterized by the simultaneous locations of all material
points. The number of independent parameters required to define the con-
figuration represents the degrees of freedom of the model. These parameters
are called the generalized displacements (or generalized coordinates;
Langhaar, 1962) of the model.

In engineering analysis, the configuration of a model is generally described
relative to its initial state, a reference configuration in which the model is not
subjected to actions. Specifically, the configuration is defined by the dis-
placements of each point from its initial position. This is illustrated in the
following examples for one-dimensional elements without reference to
actions that may correspond to these configurations.

Example 1. Consider the rigid bar in Figure 1.2, whose initial configuration
coincides with the x axis of the rectangular frame of reference. Thus, the
initial configuration is defined by the set of points 0 < x < L. If the bar is
confined to the x-y plane, it has three degrees of freedom. There is con-
. siderable freedom in the selection of generalized displacements. For example,
the position of the bar in the x-y plane can be specified by the displace-
ments—the deflections and rotation—of any initial point of the bar. Let us
select the displacements at the a end of the bar, u,, v,, and 8,, as generalized
displacements and formulate the configuration in terms of them.

The deflections of the initial point P, located a distance x from the a end
of the bar, in the directions of the x and y axes are denoted by u(x) and v(x),
respectively. Since the bar is rigid, the distance from the a end of the bar to

' This definition is restricted to holonomic models in which the generalized displacements
can be varied arbitrarily without violating kinematical constraints. Nonholonomic models are
discussed by Lanczos (1970). Langhaar (1962), and Synge and Griffith (1959).
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FIGURE 1.2 Rigid bar

the point P*, the displaced position of point P, remains x. It follows from
Figure 1.2 that

u(x) = u, + x(cos§, — 1)] -
L .
x) = v, + xsin b, } 0<x< (11)_

Equations (1.1) define the displaced position of every initialApoint of the bar
in terms of the generalized displacements..

If the rotation of the bar is infinitesimal, that is, if

02 =0 (1.2)
relative to unity, we obtain (Thbmas, 1956)
2 2
cosf, =1 ~9_“+?£_ >~ 1
2! 4!
. 0 o (1.3)
s1n6a=()a—§+§—---§0,
and Egs. (1.1) become
u(x) = u,

1.4
v(x) = v, + x0, (4
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Observe that for infinitesimal rotations, the configuration of the bar is a linear
function of the generalized displacements. This is characteristic of linear
models of structures.

Example 2. If the element in Figure 1.2 is free to experience a uniform axial
deformation, it becomes the four-degree-of-freedom element shown in
Figure 1.3a. Accordingly, the three rigid-body displacements, u,, v,, 8,, and
the deformation e represent a set of generalized displacements. However, if
the element is part of an assemblage of elements, such as a truss, it is preferable
to select the element-end deflections, u,, v,, u,, t,, as generalized displace-
ments. The formulation of the element configuration in terms of the end
deflections is illustrated.

It is convenient to resolve the configuration in Figure 1.3a into component

FIGURE 1.3 Axial deformation element
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configurations. representing transverse and axial deflections separately
(Figures 1.3b and c). Thus, the transverse deflections in Figure 1.3b are
defined by the equation of the line

o(x) = v, + l\ (0p = U,) (1.5)
which can be expressed as
l’(X) = ¢)u(x) Uy + d)h(x) Up (16)
where
X X '
rj)azl—l. (/)":1’ 0<x<L (L.7)

Since the axial deformation is uniform, the axial deflection varies linearly as
shown in Figure 1.3d (sec Problem 1.3). Hence, u(x) can be expressed in the
form of Eq. (1.6) as

u(x) = ¢ (x)u, + Pp(x)u, (1.8)
An alternative formulation of Egs. (1.6) and (1.8) is based on function
interpolation (Section 1.9). Specifically, since u(x) and r(x) must satisfy the
boundary conditions
w0 = u,. wl)=u: v()=r,, vl)=r, (1.9)
we can express them as tirst-order polynomials,
u=bhy+bhx. 1r=cy+cx (1.10)

and determine the coeficients by imposing Egs. (1.9). This approach is
illustrated in the next example.

Example 3. Consider the clement in Figure 1.4, whose configuration is
defined by the polynomial function

tX) = ¢y + ;X + 3% + ¢3x° (L.11)

By definition, the coefficients of Eq. ¢(1.11) represent generalized displace-
ments and the element has four degrees of freedom. The reasons for intro-
ducing Eq.(1.11)are that (1) it satisfies the homogeneous differential equation
of a beam (Section 1.6), hence, Eq. (1.11) characterizes the configurations of
beams subjected to boundary actions: and (2) polynomials form basic
building blocks of many interpolation functions.

Analogous 1o Example 2, let us select the element-end displacements,
U, Ug. vy, 0y, as generalized displacements and express the configuration in
terms of them. This can be accomplished by imposing the boundary con-
ditions
dr(0)

N 0 = r s
(0 = v, dx N

(1.12)
(L) = vy, P 0,



