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Preface to first edition

The subject of wavelets has evolved very rapidly in the last five or
six years—so rapidly that many articles and books are already obso-
lete. However, there is one portion of wavelet theory that has reached
a plateau, that is, the subject of orthogonal wavelets. The major con-
cepts have become standard, and further development will probably be
at the margins. In one sense they are no different than other orthogonal
systems. They enable one to represent a function by a series of orthogo-
nal functions. But there are notable differences: wavelet series converge
pointwise when others don’t, wavelet series are more localized and pick
up edge effects better, wavelets use fewer coeflicients to represent certain
signals and images.

Unfortunately, not all is rosy. Wavelet expansions change excessively
under arbitrary translations—much worse than Fourier series. The same
is true for other operators such as convolution and differentiation.

In this book wavelets are presented in the same setting as other orthog-
onal systems, in particular Fourier series and orthogonal polynomials.
Thus their advantages and disadvantages can be seen more directly.

The level of the book is such that it should be accessible to engineering
and mathematics graduate students. It will for the most part assume a
knowledge of analysis at the level of beginning graduate real and com-
plex analysis courses. However, some of the later chapters are more
technical and will require a stronger background. The Lebesgue integral
will be used throughout. This has no practical effect on the calculation
of integrals but does have a number of theoretical advantages.

Wavelets constitute the latest addition to the subject of orthogonal
series, which are motivated by their usefulness in applications. In fact,
orthogonal series have been associated with applications from their in-
ception. Fourier invented trigonometric Fourier series in order to solve
the partial differential equation associated with heat conduction and
wave propagation. Other orthogonal series involving polynomials ap-
peared in the 19th century. These too were closely related to problems
in partial differential equations. The Legendre polynomials are used to
find solutions to Laplace’s equation in the sphere, the Hermite poly-
nomials and the Laguerre polynomial for special cases of Schrodinger
wave equations. These, together with Bessel functions, are special cases
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of Sturm-Liouville problems, which lead to orthogonal series, which are
used to solve various partial differential equations.

The arrival of the Lebesgue integral in the early 20th century allowed
the development of a general theory of orthogonal systems. While not
oriented to applications, it allowed the introduction of new systems such
as the Haar and Walsh systems, which have proven useful in signal
processing. Also useful in this subject are the sinc functions and their
translates, which form an orthogonal basis of a Paley-Wiener space.
These are related to the prolate spheroidal functions, which are solutions
both to an integral equation and a Sturm-Liouville problem.

The orthogonal sequences of wavelets, which are generalizations of
the Haar system and the sinc system, have a number of unique prop-
erties. These make them useful in data compression, in image analysis,
in signal processing, in numerical analysis, and in acoustics. They are
particularly useful in digitizing data because of their decomposition and
reconstruction algorithms. They also have better convergence properties
than the classical orthogonal systems.

While the Lebesgue integral made a general theory of orthogonal sys-
tems possible, it is insufficiently general to handle many of the appli-
cations. In particular, the delta “function” or impulse function plays
a central role in signal processing but is not a square integrable func-
tion. Fortunately a theory that incorporates such things appeared in
the middle of the 20th century. This is the theory of “distributions,”
due mainly to L. Schwartz. It also is related to orthogonal systems in
that it allows representation of distributions by orthogonal systems and
also allows representations of functions by orthogonal distributions.

The body of the book is divided into 13 chapters of which the first 7
are expository and general while the remaining are more specialized and
deal with applications to other areas. Each will be concerned with the
use of or properties of orthogonal series.

In Chapter One we present two orthogonal systems that are prototypes
for wavelets. These are the Haar system and the Shannon system, which
have many, but not all, of the properties of orthogonal wavelets. They
will be preceded by a section on general orthogonal systems. This is a
standard theory that contains some results that will be useful in all of
the particular examples.

Chapter Two will give a short introduction to tempered distributions.
This is a relatively simple theory and is the only type of generalized
function needed for much of orthogonal series. Many engineers still seem
to apologize for their use of a “delta function”. There is no need to do
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so since these are well defined proper mathematical entities. Included
here also is the associated theory of Fourier transforms that enables one
to take Fourier transforms of things like polynomial and trigonometric
functions.

Chapter Three contains an introduction to the general theory of or-
thogonal wavelets. Their construction by a number of different schemes
is given as are a number of their properties. These include their multires-
olution property in which the terms of the series are naturally grouped
at each resolution. The decomposition and reconstruction algorithms of
Mallat, which give the coefficients at one resolution in terms of others,
are presented here. Some of these properties are extended to tempered
distributions in Chapter Five.

In Chapter Four we return to trigonometric Fourier series and discuss
more detailed properties such as pointwise convergence and summability.
These are fairly well known and many more details may be found in
Zygmund’s book. A short presentation on expansion of distributions in
Fourier series is also presented.

In Chapter Five we also consider orthogonal systems in Sobolev spaces.
These can be composed of delta functions as well as ordinary functions.
In the former case we obtain an orthonormal series of delta function
wavelets.

Chapter Six is devoted to another large class of examples, the ortho-
gonal polynomials. The classical examples are defined and certain of
their properties discussed. The Hermite polynomials are naturally as-
sociated with tempered distribution; properties of this connection are
covered. Other orthogonal series are discussed in Chapter Seven.

Various kinds of convergence of orthogonal series are discussed in
Chapter Eight. In particular, pointwise convergence of wavelet series is
compared to that of other orthogonal systems. Also, the rate of conver-
gence in Sobolev spaces is determined. Gibbs’ phenomenon for wavelet
series is compared to that for other series.

Chapter Nine deals with sampling theorems. These arise from many
orthogonal systems including the trigonometric and polynomial systems.
But the classical Shannon sampling theorem deals with wavelet sub-
spaces for the Shannon wavelet. This can be extended to other wavelet
subspaces as well. Both regular and irregular sampling points are con-
sidered. '

In Chapter Ten we cover the relation between the translation operator
and orthogonal systems. Wavelet expansions are not very well behaved
with respect to this operator except for certain examples.
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Chapter Eleven deals with analytic representation based on both Fou-
rier series and wavelet. These are used to solve boundary value problems
for harmonic functions in a half-plane with specified values on the real
line.

Chapter Twelve covers probability density estimation with various
orthogonal systems. Both Fourier series and Hermite series have been
used, but wavelets come out the best.

Finally in the last chapter we cover the Karhunen-Loéve theory for
representing stochastic processes in terms of orthogonal series. An al-
ternate formulation based on wavelets is developed.

Some of this text material was presented to a graduate course of mixed
mathematics and engineering students. While not directly written as a
text, it can serve as the basis for a modern course in Special Functions
or in mathematics of signal processing. Problems are included at the
end of each chapter. For the most part these are designed to aid in the
understanding of the text material.

Acknowledgments
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Preface to second edition

In the years since the first edition of this book appeared, the subject
of wavelets has continued its phenomenal growth. Much of this growth
has been associated with new applications arising out of the multiscale
properties of wavelets. Another source has been the widespread use of
threshold methods to reduce the data requirements as well as the noise in
certain signals. But in the area of wavelets as orthogonal systems, which
is the main theme of this book, the growth has not been as marked. The
principal new material has been in the area of multiwavelets, which,
however, have not found their way into as many applications as the
original theory. In addition, there seems to a resurgence of interest in
nontensor product higher dimensional wavelets, but this area still needs
some time to sort itself out.

In this new edition we have tried to correct many of the misprints and
errors in the first edition (and in the process, have probably introduced
others). We have reviewed the problems and introduced others in an
effort to make their solution possible for average graduate students. We
have also introduced a number of illustrations in an attempt to further
clarify some of the concepts and examples. The first and fourth chap-
ters remain approximately the same in this edition. The second chapter
on distribution theory has been rewritten in order to make it somewhat
more readable and self contained. Chapter three on orthogonal wavelet
theory has been expanded with some additional examples: the raised
cosine wavelets in closed form, and other Daubechies wavelets and their
derivation. In Chapter five on wavelets and distributions, a section on
impulse trains has been added. Chapter six on orthogonal polynomials
remains essentially the same, while in Chapter seven a new section on
an alternate approach to periodic wavelets has been added. In Chap-
ter eight on pointwise convergence, an additional section on positive
wavelets and their use in avoiding Gibbs’ phenomenon is new. Chapter
nine has been extensively revised and, in fact, has been split into two
chapters, one devoted primarily to the Shannon sampling theorem and
its properties and the new Chapter ten which concentrates more on sam-
pling in other wavelet subspaces. New topics include irregular sampling
in wavelet subspaces, hybrid wavelet sampling, Gibbs’ phenomenon for
sampling series in wavelet subspaces, and interpolating multiwavelets.




Chapter eleven on translation and dilation has only minor changes as
does most of Chapter twelve except for a few pages on wawelets of en-
tire analytic functions. In Chapter thirteen on statistics a number of
new topics have been added. These include positive wavelet density es-
timators, density estimators with noisy data, and threshold methods.
Some additional calculations involving some of these estimators are also
included. Chapter fourteen, which deals with stochastic processes, has
some new material on cyclostationary processes.

Acknowledgements.

The contributions of many individuals appear in this new edition. In
particular the authors wish to acknowledge the work of Youming Liu,
Hong-tae Shim, and Luchuan Cai which is covered in more detail here.

Gilbert G. Walter and Xiaoping Shen




Contents

Preface to first edition
Preface to second edition
List of Figures

1 Orthogonal Series

1.1 General theory . . ... ... ... ... ... .......
1.2 Examples . ... .. ... ... . ... ...
1.2.1 Trigonometric system . . ... ... ... .. ...
1.22 Haarsystem . ... ... .. ... .........
1.2.3 The Shannon system . . . . . ... ... ......
1.3 Problems . . ... ... .. .. ... .. ..
2 A Primer on Tempered Distributions
2.1 Intuitive introduction . . . ... ... ... ... .....
2.2 Testfunctions . . .. .. ... ... ... .. ........
2.3 Tempered distributions . . . . .. . ... ... ... ...
2.3.1 Simple properties based on duality . . ... .. ..
2.3.2 Further properties . . .. .. .. ... .......
2.4 Fourier transforms . . . ... ... ... ... ... ...

2.5 Periodic distributions. . . . . .. ... ... ...
2.6 Analytic representations . . . . ... ... ... ......
2.7 Sobolevspaces . . ... ... . ... ... .. ... ...
28 Problems ................ e

3 An Introduction to Orthogonal Wavelet Theory
3.1 Multiresolution analysis . . . . ... ... ... ......

ix

xvii



Xii

3.2 Mother wavelet . . . . . .. ... L
3.3 Reproducing kernels and a moment condition . . .. . ..
3.4 Regularity of wavelets as a moment condition . . . . . . .

341 Moreonexampled . . . .. .. ... .. ......
3.5 Mallat’s decomposition and reconstruction algorithm . . .
3.6 Filters . . . . . . .. ..o
3.7 Problems .. ... ... ... .

Convergence and Summability of Fourier Series

4.1 Pointwise convergence . . . . .. ... ... ........
4.2 Summability . ... ... L
4.3 Gibbs phenomenon . . .. ... ... L.
4.4 Periodic distributions . . . . . ... ... ... ..., ..
45 Problems . ... ... ... ... ... ..

Wavelets and Tempered Distributions
3.1 Multiresolution analysis of tempered distributions
9.2 Wavelets based on distributions . . . . ... ... ... ..
9.2.1 Distribution solutions of dilation equations
5.2.2 A partial distributional multiresolution analysis . .
5.3 Distributions with point support . . . ... ... ... ..

5.4 Approximation with impulse trains . . . . .. ... . ...

3.5 Problems . ... ... .. ... .. ...

Orthogonal Polynomials

6.1 General theory . ... ... ... .. .. .. .. ... . . .

6.2 Classical orthogonal polynomials . . .. ... ... ... .
6.2.1 Legendre polynomials . .. .......... . . .
6.2.2 Jacobipolynomials . . . ... ... .. ... ... .
6.2.3 Laguerre polynomials . . ... ... ... .. . ..

6.2.4 Hermite polynomials . . . .. ... .. .. .. .. .
6.3 Problems . ......... ... .. .. . .. ... .

Other Orthogonal Systems

7.1  Self adjoint eigenvalue problems on finite intervals

7.2 Hilbert-Schmidt integral operators . . . ... ... .. .
7.3 An anomaly: the prolate spheroidal functions -
7.4 Aluckyaccident? . . . . ... ... ... . ... . ..
7.5 Rademacher functions . .. ... ... . . ... . . .
7.6 Walsh function . ... ... ... . . . . .. . . .
7.7 Periodic wavelets . . . ... ... ... .. . .. . . .




7.7.1 Periodizing wavelets . . . .. ... ... ... ...
7.7.2 Periodic wavelets from scratch . . . .. ... ...
7.8 Local sine or cosine basis . . . . . ... ... .......
7.9 Biorthogonal wavelets . . . . ... ... ... . ......
7.10 Problems . . . . . . .. ... ...

Pointwise Convergence of Wavelet Expansions
8.1 Reproducing kernel delta sequences . . . . . ... ... ..
8.2 Positive and quasi-positive delta sequences . . . . . . . . .
8.3 Local convergence of distribution expansions . . . . . . .
8.4 Convergence almost everywhere . . . . . . . . ... ... .
8.5 Rate of convergence of the delta sequence . . .. ... ..
8.6 Other partial sums of the wavelet expansion . . . . . . . .
8.7 Gibbs phenomenon . . . .. ... ...
8.8 Positive scaling functions . . .. . ... ... .. ... ..
8.8.1 A general construction . . . ... ... ... .. ..
8.8.2 Backtowavelets . . .. ... ... ... ... .. .
89 Problems . ... .. ... .. ... ... ... ... ...

A Shannon Sampling Theorem in Wavelet Subspaces
91 ARieszbasisof V,, . ... ......... .. ... . ..
9.2 The sampling sequenceinV,,, . . . ... ... .... ...

9.3 Examples of sampling theorems . . . . .. .. ... ... .
9.4 The sampling sequence in T, . . . . .. ... ... ... .
9.5 Shifted sampling . ... .......... ... .. ... .
9.6 Gibbs phenomenon for sampling series . . . . .. ... ..

9.6.1 The Shannon case revisited . . . ... ... ... .

9.6.2 Backtowavelets . ......... ... .. . . . .
9.7 Irregular sampling in wavelet subspaces . . ... ... ..
98 Problems . ... .. ..., ... .. ... ... ... .

10 Extensions of Wavelet Sampling Theorems

10.1 Oversampling with scaling functions . . ... ... .. . .
10.2 Hybrid sampling series . . . . ... ... ... ... .. .
10.3 Positive hybrid sampling . . . ... ... ... ... . . .
10.4 The convergence of the positive hybrid series . . . . . . .
10.5 Cardinal scaling functions . . . . . ... ... . . . . . .
10.6 Interpolating multiwavelets . . . ... ... .. . . .
10.7 Orthogonal finite element multiwavelets . . . . . . . . . .

10.7.1 Sobolev typenorm . . . ... ... ... . ..




Xiv

10.8 Problems . . . .. .. ... .. .. ... .. ...

11 Translation and Dilation Invariance in Orthogonal

Systems

11.1 Trigonometric system . . . . . . . . . . .. ... ..
11.2 Orthogonal polynomials . . . . .. .. ... ... .....
11.3 An example where everything works . . . . . . . . .. ..
11.4 An example where nothing works . . . . . ... ... ...
11.5 Weak translation invariance . . . . . . . ... ... ....
11.6 Dilations and other operations . ... ... ........
1.7 Problems . . . . . ... ... ... ... ...

12 Analytic Representations Via Orthogonal Series
12.1 Trigonometric series . . . . . . . ... ... .. ... ...
12.2 Hermite series . . . . . . . . . ... ... . L. ..
12.3 Legendre polynomial series . . . . . . ... ... ...
12.4 Analytic and harmonic wavelets . . . . . .. ... ... ..
12.5 Analytic solutions to dilation equations . ... ... ...
12.6 Analytic representation of distributions by wavelets . . .
12.7 Wavelets analytic in the entire complex plane . . . . . . .
128 Problems . . . ... .. ... ... ..

13 Orthogonal Series in Statistics
13.1 Fourier series density estimators . . .. .. ... .. ...
13.2 Hermite series density estimators . . . . .. .. ... ...
13.3 The histogram as a wavelet estimator . . ... ... ...
13.4 Smooth wavelet estimators of density . . . . . ... ... .
13.5 Local convergence . . . .. ... ... .. ..... ... .

13.6 Positive density estimators based on
characteristic functions . . . . . .. ... ... ... ... .

13.7 Positive estimators based on positive wavelets . . . . . . .
13.7.1 Numerical experiment . . .. .. ... .......
13.8 Density estimation with noisy data . . . .. .. ... ...
13.9 Other estimation with wavelets . . . . . ... .. .. ...
13.9.1 Spectral density estimation . . ... .. ... ...
13.9.2 Regression estimators . . . ... .. .. ..... .
13.10 Threshold Methods . . . . . . .. ... ... . ... ..
13.11 Problems . ... ... ........ ... .. ... ...

255

255
256
257
258
259
265
267

269
270
274
280
282
286

. 287

291
293



14 Orthogonal Systems and Stochastic Processes
141 K-Lexpansions . . . . . .. ... .. .. ..........
14.2 Stationary processes and wavelets . . . . . ... ... ...
14.3 A series with uncorrelated coefficients . . . . .. ... ..
14.4 Wavelets based on band limited processes . . .. .. ...
14.5 Nonstationary processes . . . . . .. .. ... .. .....

14.6 Problems
Bibliography

Index

XV

329
329
332
335
341
345
349

351

363



List

of Figures

11

1.2
1.3

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9
3.10

3.11
3.12

3.13

The scaling function and mother wavelet for the Haar

SYStem. . . .. ... e e e e e e 11
The scaling function for the Shannon system. . . .. . .. 14
The mother wavelet for the Shannon system. . . ... .. 15

A test function in the space S (the Hermite function hy(z)). 23
Some approximations to the delta function in S’. . . . . . 28

Typical functions in the subspaces V; of the multiresolu-

tion analysis for the Haar scaling function. . . . . . .. .. 39
Typical functions in the subspaces V; of the multiresolu-
tion analysis for the Haar scaling function. . . . . ... .. 39
Typical functions in the subspaces V5 of the multiresolu-
tion analysis for the Haar scaling function. . . . . ... .. 40
The scaling function of the Franklin wavelet arising from
the hat function. . . . ... .. ... .. ... .. .. ... 47
The Daubechies scaling function of example 3. . . . . . . 47
The mother wavelet of example 3. . . ... ........ 48
The mother wavelet of Example 5 in the time domain. . . 49
The scaling function and absolute value of the mother
wavelet of Example 7 in frequency domain. . . ... ... 51
The scaling function of Figure 3.7 in the time domain. . . 52
The reproducing kernel ¢(z,t) for V; in the case of Haar
wavelets. . . . . .. . L 55

Daubechies scaling function and mother wavelet (N = 4). 63
The system functions of some continuous filters: low-pass,

high-pass and band-pass. . ... ......... ... . . 66
The system function of discrete lowpass (halfband) filter. 68




xviii

3.14 The decomposition algorithm. . . . . . . .. .. ... ... 69
3.15 The reconstruction algorithm. . . . . . . . . ... ... . 69
4.1 The Dirichlet kernel of Fourier series (n=6). . . . . . ... 77
4.2 The Fejer kernel of Fourier series (n=6). . . . . ... ... 81
4.3 The saw tooth function. . . . . . . .. ... ... ... .. 83
4.4 Gibbs phenomenon for Fourier series; approximation to
the saw tooth function using Dirichlet kernel. . . . . . . . 83
4.5 The approximation to the saw tooth function using Fejer
kernel. . . . ... 84
9.1 A mother wavelet with point support. The vertical bars
represent delta functions. . . . . ... ... ... ... .. 104
5.2 A continuous function and its impulse train. . . . . . . . . 105
6.1 Some Legendre polynomials (n=2, 3, and 6). . ... ... 115
6.2 Some Laguerre polynomials (alpha=1/2, n= 5, 7, and 10). 120
6.3 Some Hermite polynomials (modified by constant multi-
ples,n=4,5,and 7). .. ....... .. ... .. ..., 122
7.1 The Haar mother wavelet. . . ... ... ... ..... . 141
7.2 One of the Rademacher functions. . . ... ... ... .. 143
7.3 Two orthogonal Walsh functions. . . . ... ... ... .. 144
7.4 A bell used for a local cosine basis. . . . .......... 151
7.5 Three elements in the local cosine basis with bell of Figure
T4 L P 153
7.6 Two additional elements of the local cosine basis showing
thebell. ... ... ... 154
7.7 Two biorthogonal pairs of scaling functions with the same
MRA. . ... 156
7.8 A biorthogonal pair of scaling functions and wavelets with
compact support. . . .. ... ... 159
8.1 The delta sequences from Fourier series — the Dirichelet
kernel. . . ... 164
8.2 The delta sequences from Fourier series — the Fejer kernel. 165
8.3 The quasi-positive delta sequence for the Daubechies
wavelet o, m=0.. ... ... . ... .. ... ... . . 168
8.4 The summability function p"(z) for Daubechies wavelet

2p(x), m=0. . ... .. 183




Xix

8.5 The positive delta sequence k,. ,,, (x. y) for Daubechies wavelet

ob(z), m=0. . . ...
9.1 The sampling function for the Daubechies wavelet 2¢(t)
with v = —\—}—5. ........................

9.2 The function h of Proposition 9.3. . .. .. ... ... ..
9.3 The partial sum of the Shannon series expansion.

10.1 An example of the scaling function of a Meyer wavelet
at scale m=0 and the sum of 5 terms of its sampling
expansion in the next scalem=1. . . ... ... ... . ..

10.2 The positive summability function for the Coiflet of de-
gree2withr =022, .. ... ... ... ... ... ...

10.3 The dual of the positive summability function in Figure
102, . 0000 e e e

10.4 A non-negative function f(z) = e_%X[_l/g’l/z]. .....

10.5 The positive hybrid series (m=4) using Coiflet of degree
2 for the function in Figure 10.4. . . ... ... ... ...

10.6 The hybrid sampling series for the function in Figure 10.4
(m = 4) using Coiflet of degree 2. . . . . . ... ... ...

10.7 An example of cardinal scaling function of Theorem 10.5,
type two raised cosine wavelet. . . ... .. ... ... .

10.8 The mother wavelet for the scaling function in
Figare 10.7. . . . . . . . ... . L,

10.9 The scaling function and wavelet of interpolating multi-
wavelets for n=1. . ... ... . ... ...........

10.10 The two scaling functions of interpolating multiwavelets
forn=2. . ... .. ...

10.11 The first pair of wavelets of interpolating multiwavelets
forn=2. . ... ..

11.1 The approximation of the shifted scaling function by Haar
seriesat scalem=1. . . ... ... ... ... ... . ...

12.1 The kernel Kr(t) given in Lemma 12.1 with m = 2.

12.2 The Hermite function h2(z) and the real part of the Her-
mite function of the second kind hy(z + i - 0. ......

12.3 A Legendre polynomial (n=3). .. .......... ..

12.4 The real and imaginary parts of the analytic representa-
tions at y=2 for the Legendre polynomial in Figure 12.3.

184

228

239

281



