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Preface

To some extent, it would be accurate to summarize the contents of this
book as an intolerably protracted description of what happens when either
one raises a transition probability matrix P (i.e., all entries (P);; are non-
negative and each row of P sums to 1) to higher and higher powers or one
exponentiates R(P — I), where R is a diagonal matrix with non-negative
entries. Indeed, when it comes right down to it, that is all that is done in
this book. However, I, and others of my ilk, would take offense at such a
dismissive characterization of the theory of Markov chains and processes with
values in a countable state space, and a primary goal of mine in writing this
book was to convince its readers that our offense would be warranted.

The reason why I, and others of my persuasion, refuse to consider the theory
here as no more than a subset of matrix theory is that to do so is to ignore the
pervasive role that probability plays throughout. Namely, probability theory
provides a model which both motivates and provides a context for what we
are doing with these matrices. To wit, even the term “transition probability
matrix” lends meaning to an otherwise rather peculiar set of hypotheses to
make about a matrix. Namely, it suggests that we think of the matrix entry
(P)i; as giving the probability that, in one step, a system in state i will make
a transition to state j. Moreover, if we adopt this interpretation for (P);;,
then we must interpret the entry (P");; of P™ as the probability of the same
transition in n steps. Thus, as n — oo, P™ is encoding the long time behavior
of a randomly evolving system for which P encodes the one-step behavior,
and, as we will see, this interpretation will guide us to an understanding of
limy,_,00{P");;. In addition, and perhaps even more important, is the role
that probability plays in bridging the chasm between mathematics and the
rest of the world. Indeed, it is the probabilistic metaphor which allows one to
formulate mathematical models of various phenomena observed in both the
natural and social sciences. Without the language of probability, it is hard to
imagine how one would go about connecting such phenomena to P".

In spite of the propaganda at the end of the preceding paragraph, this
book is written from a mathematician’s perspective. Thus, for the most part,
the probabilistic metaphor will be used to elucidate mathematical concepts
rather than to provide mathematical explanations for non-mathematical phe-
nomena. There are two reasons for my having chosen this perspective. First,
and foremost, is my own background. Although I have occasionally tried to
help people who are engaged in various sorts of applications, I have not accu-
mulated a large store of examples which are easily translated into terms which
are appropriate for a book at this level. In fact, my experience has taught
me that people engaged in applications are more than competent to handle
the routine problems which they encounter, and that they come to someone
like me only as a last resort. As a consequence, the questions which they
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ask e tend to be quite difficult and the answers to those few which I can
solve usually involve material which is well beyond the scope of the present
book. The second reason for my writing this book in the way that I have
is that I think the material itself is of sufficient interest to stand on its own.
In spite of what funding agencies would have us believe, mathematics qua
mathematics is a worthy intellectual endeavor, and I think there is a place
for a modern introduction to stochastic processes which is unabashed about
making mathematics its top priority.

I came to this opinion after several semesters during which I taught the
introduction to stochastic processes course offered by the M.I.T. department
of mathematics. The clientele for that course has been an interesting mix of
undergraduate and graduate students, less than half of whom concentrate in
mathematics. Nonetheless, most of the students who stay with the course
have considerable talent and appreciation for mathematics, even though they
lack the formal mathematical training which is requisite for a modern course
in stochastic processes, at least as such courses are now taught in mathematics
departments to their own graduate students. As a result, I found no ready-
made choice of text for the course. On the one hand, the most obvious choice is
the classic text A First Course in Stochastic Processes, either the original one
by S. Karlin or the updated version [4] by S. Karlin and H. Taylor. Their book
gives a no nonsense introduction to stochastic processes, especially Markov
processes, on a countable state space, and its consistently honest, if not al-
ways easily assimilated, presentation of proofs is complemented by a daunting
number of examples and exercises. On the other hand, when I began, I feared
that adopting Karlin and Taylor for my course would be a mistake of the same
sort as adopting Feller’s book for an undergraduate introduction to probabil-
ity, and this fear prevailed the first two times I taught the course. However,
after using, and finding wanting, two derivatives of Karlin’s classic, I took the
plunge and assigned Karlin and Taylor’s book. The result was very much the
one which I predicted: I was far more enthusiastic about the text than were
my students.

In an attempt to make Karlin and Taylor’s book more palatable for the
students, I started supplementing their text with notes in which I tried to
couch the proofs in terms which I hoped they would find more accessible, and
my efforts were rewarded with a quite positive response from my students.
In fact, as my notes became more and more extensive and began to diminish
the importance of the book, I decided to convert them into what is now this
book, although I realize that my decision to do so may have been stupid. For
one thing, the market is already close to glutted with books which purport
to cover this material. Moreover, some of these books are quite popular, al-
though my experience with them leads me to believe that their popularity
is not always correlated with the quality of the mathematics they contained.
Having made that pejorative comment, I will not make public which are the
books which led me to this conclusion. Instead, I will only mention the books
on this topic, besides Karlin and Taylor’s, which I very much liked. Namely,
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J. Norris’s book [5] is an excellent introduction to Markov processes which,
at the same time, provides its readers with a good place to exercise their
measure-theoretic skills. Of course, Norris’s book is only appropriate for stu-
dents who have measure-theoretic skills to exercise. On the other hand, for
students who possess those skills, Norris’s book is a place where they can
see measure theory put to work in an attractive way. In addition, Norris
has included many interesting examples and exercises which illustrate how
the subject can be applied. The present book includes most of the math-
ematical material contained in (5], but the proofs here demand much less
measure theory than his do. In fact, although I have systematically employed
measure theoretic terminology (Lebesgue’s Dominated Convergence Theorem,
the Monotone Convergence Theorem, etc.), which is explained in Chapter 6,
I have done so only to familiarize my readers with the jargon which they will
encounter if they delve more deeply into the subject. In fact, because the
state spaces in this book are countable, the applications which I have made of
Lebesgue’s theory are, with one notable exception, entirely trivial. The one
exception, which is made in §6.2, is that I have included a proof that there
exist countably infinite families of mutually independent random variables.
Be that as it may, the reader who is ready to accept that such families exist
has no need to consult Chapter 6 except for terminology and the derivation of
a few essentially obvious facts about series. For more advanced students, an
excellent treatment of Markov chains on a general state space can be found
in the book [6] by D. Revuz.

The organization of this book should be more or less self-evident from the
table of contents. In Chapter 1, I give a bare hands treatment of the basic
facts, with particular emphasis on recurrence and transience, about nearest
neighbor random walks on the square, d-dimensional lattice Z%. Chapter 2
introduces the study of ergodic properties, and this becomes the céntral theme
which ties together Chapters 2 through 5. In Chapter 2, the systems under
consideration are Markov chains (i.e., the time parameter is discrete), and the
driving force behind the development there is an idea which was introduced
by Doeblin. Restricted as the applicability of Doeblin’s idea may be, it has
the enormous advantage over the material in Chapters 3 and 4 that it provides
an estimate on the rate at which the chain is converging to its equilibrium
distribution. After giving a reasonably thorough account of Doeblin’s theory,
in Chapter 3 I study the ergodic properties of Markov chains which do not
necessarily satisfy Doeblin’s condition. The main result here is the one sum-
marized in equation (3.2.15). Even though it is completely elementary, the
derivation of (3.2.15), is, without doubt, the most demanding piece of analy-
sis in the entire book. So far as I know, every proof of (3.2.15) requires work
at some stage. In supposedly “simpler” proofs, the work is hidden elsewhere
(either measure theory, as in [5] and (6], or in operator theory, as in [2]). The
treatment given here, which is a re-working of the one in [4] based on Feller’s
renewal theorem, demands nothing more of the reader than a thorough un-
derstanding of arguments involving limits superior, limits inferior, and their
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role in proving that limits exist. In Chapter 4, Markov chains are replaced by
continuous-time Markov processes (still on a countable state space). I do this
first in the case when the rates are bounded and therefore problems of possible
explosion do not arise. Afterwards, I allow for unbounded rates and develop
criteria, besides boundedness, which guarantee non-explosion. The remainder
of the chapter is devoted to transferring the results obtained for Markov chains
in Chapter 3 to the continuous-time setting. Aside from Chapter 6, which is
more like an appendix than an integral part of the book, the book ends with
Chapter 5. The goal in Chapter 5 is to obtain quantitative results, reminis-
cent of, if not as strong as, those in Chapter 2, when Doeblin’s theory either
fails entirely or yields rather poor estimates. The new ingredient in Chapter
5 is the assumption that the chain or process is reversible (i.e., the transition
probability is self-adjoint in the L2-space of its stationary distribution), and
the engine which makes everything go is the associated Dirichlet form. In
the final section, the power of the Dirichlet form methodology is tested in an
analysis of the Metropolis (a.k.a. as simulated annealing) algorithm. Finally,
as I said before, Chapter 6 is an appendix in which the ideas and terminol-
ogy of Lebesgue’s theory of measure and integration are reviewed. The one
substantive part of Chapter 6 is the construction, alluded to earlier, in §6.2.1.

Finally, I have reached the traditional place reserved for thanking those
individuals who, either directly or indirectly, contributed to this book. The
principal direct contributors are the many students who suffered with various
and spontaneously changing versions of this book. I am particularly grateful
to Adela Popescu whose careful reading brought to light many minor and a few
major errors which have been removed and, perhaps, replaced by new ones.
Thanking, or even identifying, the indirect contributors is trickier. Indeed,
they include all the individuals, both dead and alive, from whom I received
my education, and I am not about to bore you with even a partial list of who
they were or are. Nonetheless, there is one person who, over a period of more
than ten years, patiently taught me to appreciate the sort of material treated
here. Namely, Richard A. Holley, to whom I have dedicated this book, is a
true probabilist. To wit, for Dick, intuitive understanding usually precedes
his mathematically rigorous comprehension of a probabilistic phenomenon.
This statement should lead no one to to doubt Dick’s powers as a rigorous
mathematician. On the contrary, his intuitive grasp of probability theory not
only enhances his own formidable mathematical powers, it has saved me and
others from blindly pursuing flawed lines of reasoning. As all who have worked
with him know, reconsider what you are saying if ever, during some diatribe
into which you have launched, Dick quietly says “I don’t follow that.”

In addition to his mathematical prowess, every one of Dick’s many students
will attest to his wonderful generosity. I was not his student, but I was
his colleague, and I can assure you that his generosity is not limited to his
students.

Daniel W. Stroock, August 2004
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CHAPTER 1

Random Walks
A Good Place to Begin

The purpose of this chapter is to discuss some examples of Markov processes
which can be understood even before the term “Markov process” is. Indeed,
anyone who has been introduced to probability theory will recognize that
these processes all derive from consideration of elementary “coin tossing.”

1.1 Nearest Neighbor Random Walks on Z

Let p be a fixed number from the open interval (0,1), and suppose that!
{B, : n € Z*} is a sequence of {1, 1}-valued, identically distributed Bernoul-
Ii random variables? which are 1 with probability p. That is, for any n € Z*
and any E = (e1,...,€n) € {-1,1}7,

]P(Bl =€1,..-,Bn = e,,) = pN(E)q""N(E) where ¢ =1 — p and

1.1.1 n
A1) v = #{m: em=1} = Lt%@ when Sp(E) = Y ém.
1
Next, set
(1.1.2) Xo=0 and Xn= ) Bm forneZ".
m=1

The existence of the family {B, : n € Z*} is the content of §6.2.1.

The above family of random variables {X,, : n € N} is often called a nearest
neighbor random walk on Z. Nearest neighbor random walks are examples
of Markov processes, but the description which we have just given is the
one which would be given in elementary probability theory, as opposed to a
course, like this one, devoted to stochastic processes. Namely, in the study
of stochastic processes the description should emphasize the dynamic aspects

17 is used to denote the set of all integers, of which N and Z* are, respectively, the non-
negative and positive members.

2 For historical reasons, mutually independent random variables which take only two values
are often said to be Bernoulli random variables.
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of the family. Thus, a stochastic process oriented description might replace
(1.1.2) by

P(Xo =0) =1 and

(1.1.3) p ife=1

P(Xn—Xn-IZGIXO,...,Xn._l):{q if6:-17

where IP’(Xn —Xpno1 = € ) Xo, ... ,Xn_l) denotes the conditional probability
(cf. §6.4.1) that X,, — X,_1 = € given 0({Xo,..., Xn-1}). Notice that (1.1.3)
is indeed more dynamic a description than the one in (1.1.2). Specifically, it
says that the process starts from 0 at time n = 0 and proceeds so that, at
each time n € Z*, it moves one step forward with probability p or one step
backward with probability ¢, independent of where it has been before time n.
1.1.1. Distribution at Time n: In this subsection, we will present two
approaches to computing P(X,, = m). The first computation is based on the
description given in (1.1.2). Namely, from (1.1.2) it is clear that P(|Xn] <
n) = 1. In addition, it is clear that

nodd = P(X,isodd)=1 and neven = P(X, iseven) = 1.

Finally, given m € {—-n,...,n} with the same parity as n and a string F =
(e1,-.-,€n) € {=1,1}" with (cf. (1.1.1)) Sp(E) = m, N(E) = 24™ and so

n—m

P(By=e1,...,Bn =€) = p"T¢"7

Hence, because, when (ﬁ) = ﬁ is the binomial coefficient “¢ choose k,”

there are (m%n) such strings E, we see that
2

n nt+m n-m
IP(X" = m) = (min)p ; q_ﬁ_
2

if me Z, |/m| < n, and m has the same parity as n

(1.1.4)

and is 0 otherwise.

Our second computation of the same probability will be based on the more
dynamic description given in (1.1.3). To do this, we introduce the notation
(P™)m = P(X, = m). Obviously, (P°);, = 8o,m, where 6 ¢ is the Kronecker
symbol which is 1 when k = ¢ and 0 otherwise. Further, from (1.1.3), we see
that P(X, = m) equals

P(Xn-1=m—-1& Xpa=m)+P(Xp_1 =m+1& X, =m)
=pP(Xn_1 =m —1) + gP(Xn-1 =m+1).

That is,
(1-1-5) (Po)m = 60,m and (Pn)m = p(Pn_l)m—l + Q(Pn—l)m+1-
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Obviously, (1.1.5) provides a complete, albeit implicit, prescription for com-
puting the numbers (P™),,, and one can easily check that the numbers given
by (1.1.4) satisfy this prescription. Alternatively, one can use (1.1.5) plus in-
duction on n to see that (P"),, = 0 unless m = 2{—n for some 0 < ¢ < n and
that (C™)g = (C™)e-1 + (C™)e—1 when (C™)¢ = p~4¢q"4(P™)2¢—n. In other
words, the coefficients {(C™); : n € N & 0 < £ < n} are given by Pascal’s
triangle and are therefore the binomial coefficients.

1.1.2. Passage Times via the Reflection Principle: More challenging
than the computation in §1.1.1 is finding the distribution of the first passage
time to a point a € Z. That is, given a € Z \ {0}, set®

(1.1.6) (o =inf{n >1: X, =a} (= oo when X, # a for any n > 1).

Then (, is the first passage time to a, and our goal here is to find its distribu-
tion. Equivalently, we want an expression for P(¢, = n), and clearly, by the
considerations in §1.1.1, we need only worry about n’s which satisfy n > |a|
and have the same parity as a.

Again we will present two approaches to this problem, here based on (1.1.2)
and in §1.1.5 on (1.1.3). To carry out the one based on (1.1.2), assume that
a € Z*, suppose that n € Z* has the same parity as a, and observe first that

Plo=n)=PXpn=a&(G>n—-1)=pP((t>n—-1& X, 1=0a—1).

Hence, it suffices for us to compute ]P’((a >n—1&X,_1=a-— 1). For this
purpose, note that for any E € {—1,1}*"! with S,,_1(E) = a — 1, the event
{(B1,-..,Bn-1) = E} has probability pq“""lqﬁi‘g. Thus,

(*) P(Ca = n) = N(n,a)p™+* ¢" %"

where NV (n,a) is the number of E € {-1,1}"*"! with the properties that
Se(E)<a-1for0<f¢<n-—1and S,_1(F) =a—1. That is, everything
comes down to the computation of N'(n,a). Alternatively, since N'(n,a) =
(sta!,)—N'(n,a), where N’(n, a) is the number of E € {-1,1}"~! such that
Sn—1(E) = a — 1 and S¢(E) > a for some £ < n — 1, we need only compute
N'(n,a). For this purpose we will use a beautiful argument known as the
reflection principle. Namely, consider the set P(n, a) of paths (Sp,...,S,_1) €
Z"™ with the properties that Sop =0, Sg — Spp—1 € {-1,1} for 1 <m <n —1,
and S, > a for some 1 < m < n — 1. Clearly, N'(n,a) is the numbers of
paths in the set L(n,a) consisting of those (Sp,...,Sn-1) € P(n,a) for which
Sn—1 = a — 1, and, as an application of the reflection principle, we will show
that the set L(n,a) has the same number of elements as the set U(n, a) whose
elements are those paths (Sp,...,9-1) € P(n,a) for which S,_; = a + 1.
Since (So,...,Sn—1) € U(n,a) if and only if So = 0, Sy, — Sm—1 € {—1,1}

3 As the following indicates, we take the infemum over the empty set to be +oo.
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forall 1 <m < n-1, and S,_1 = a + 1, we already know how to count
them: there are (%7a) of them. Hence, all that remains is to provide the
advertised application of the reflection principle. To this end, for a given
S = (S0,-.-,S._1) € P(n,a), let £(S) be the smallest 0 < k < n—1 for which
Sk > a, and define the reflection R(S) = (.5’0, - S’n_l) of S so that S,y = Sm
if0 < m < £S) and Sx = 2a — S if 4S) < m < n —1. Clearly, ® maps
L(n,a) into U(n,a) and U(n,a) into L(n,a). In addition, R is idempotent:
its composition with itself is the identity map. Hence, as a map from L(n,a)
to U(n,a), R it must be both one-to-one and onto, and so L(n,a) and U(n,a)
have the same numbers of elements.
We have now shown that N'(n,a) = (1;;) and therefore that

n—1 n—1
N(n,a) = (m_1> - (m)
2 2
Finally, after plugging this into (*), we arrive at

n-—1 n—1 nta n-a
P((a =n) = [(m_l)_(m)}p+qT,
p) 2

which simplifies to the remarkably simple expression

a n nia n-—a a
PG =) = 5 (o JpF 0 = SR = ).
The computation when a < 0 can be carried out either by repeating the
argument just given or, after reversing the roles of p and ¢, applying the
preceding result to —a . However one arrives at it, the general result is that
a n nta n-—a a
(1.1.7) a#0 = P(Cazn)=l——|<_n+_a>p 7 g 2 | I]I"(X,,:a.)

n D) n

for n > |a| with the same parity as a and is 0 otherwise.
1.1.3. Some Related Computations: Although the formula in (1.1.7) is
elegant, it is not particularly transparent. In particular, it is not at all evident
how one can use it to determine whether P({, < 0o) = 1. To carry out this
computation, let a > 0 be given, and write of {; = fo(B1,...,Bn,...), where
f. is the function which maps {—1,1}2" into Z* U {co} so that, for each
n €N,

m

fol€ly o y€ny...) >0 = Zee <a forl1<m<n.
=1

Because the event {(, = m} depends only on (B, ..., By) and

a=m = Gr1=m+oX™

1.1.8
( ) where (1 0™ = f1(Bm41s---» Bmtns--«)s
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{Ca = m & ag1 < 00} = {Ce =m}N{{10E™ < oo}, and {¢a = m} is
independent of {¢; o ™ < oo}. In particular, this leads to

P(Cat1 < 00) = Z P(Ca = m & (41 < 00)

m=1

= Z P(¢, = m)P({1 0 E™ < 00)

m=1

=P(¢1 < 00) Y P(¢a =m) =P((1 < 00)P({e < 00),
m=1

since (Bm+1,- - -+ Bm4n,--.) and (Bi,..., Bn,...) have the same distribution
and therefore so do ¢; o ¥™ and ¢;. The same reasoning applies equally well
when a < 0, only now with —1 playing the role of 1. In other words, we have

proved that

(1.1.9) P(¢a < 0) = P({sgn(a) < oo)lal for a € Z \ {0},

where sgn(a), the signum of a, is 1 or —1 according to whether a > 0 or
a < 0. In particular, this shows that P({; < 00) =1 = P({, < o0) = 1 and
P((.1 <o0)=1 = P({_, <o0)=1forallacZt

In view of the preceding, we need only look at P(¢; < oo). Moreover, by
the Monotone Convergence Theorem, Theorem 6.1.9,

oo
N T 1l —_ 13 2n—1 _ _
P({; < 00) = P/n'i]E[s 1] = }%;s P(¢; = 2n —1).

Applying (1.1.7) with a = 1, we know that

PG =2n—1) = — (2"‘1)p"q"-‘.

2n —1 n

Next, note that

n—1

1 (2n—1\ (2m-1) 2r1
2n—1( n ) ~ nln-1)! Tl m1_=11(2m—1)
- M- =05 (2)

where?, for any a € R,

(a)_{l. ifn=0
n) | Alnola—m) ifneZ*

41n the preceding, we have adopted the convention that H;___k a; =1ifé<k.
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is the generalized binomial coefficient which gives the coefficient of ™ in the
Taylor’s expansion of (1 + z)® around z = 0. Hence,

1 =\ 1-— 4pq32
§ 2n—1 E
P — 1 —_—— 4pq __—.’
5 Cl n 2(]3 ( >( s ) 2(]8

n=1 n=1
and so
1—+/1—4dpgs?
(1.1.10) E[s9] = —Y— PP for |s| < 1.

2gs

Of course, by symmetry, one can reverse the roles of p and ¢ to obtain

1— /1 — 4pgs?

o5 for |s| < 1.

(1.1.11) E[s¢-] =

By letting s ' 1 in (1.1.10) and noting that 1 — 4pg = (p + q)% — 4pq =
(p — q)?, we see that®

]zl—m—ﬂ|=pAq

lim E[s%
[ 2q q

s,/'1

and so
1 ifp>gq

P =
(¢ <o) {s ifp<gq.

Of course, P(¢_; < o0) is given by the same formula, only with the roles of p
and ¢ reversed. Thus,

1 facZt&p>qor —acZt &p<gq
1.1.12) P < = a
( ) (Ca < 00) (g) ifaeZt* & p<qgor —a€Z* &p>q.
1.1.4. Time of First Return: Having gone to so much trouble to arrive at

(1.1.12), it is only reasonable to draw from it a famous conclusion about the
recurrence properties of nearest neighbor random walks on Z. Namely, let

po =inf{n > 1: X, =0} (= oo if X,, # 0 for all n > 1)
be the time of first return to 0. Then, by precisely the same sort of reasoning
which allowed us to arrive at (1.1.9), we see that P(X; =1 & po < 00) =
pP({-; < o0) and P(X; = —~1 & pp < 00) = qlP({; < o0}, and so, by (1.1.12),

(1.1.13) P(po < 00) = 2(p A ).

5 We use a A b to denote the minimum min{a, b} of a,b € R.



