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A Note on Typographical
Conventions

As mentioned in the preface, these items frequently reference one
another. Rather than simply mention the item number, which would
force an examination of the table of contents to determine just what was
being referenced, the title of the item is italicized and rendered in full.
To permit easy reference to the item, the item number and page on which
it appears are appended as subscripts. For example, the item referenced
Eat Your Vegetables [64, 256] tells us that the item entitled “Eat Your Veg-
etables” is item 64, which can be found on page 256.

Code examples appear in fixed-width font to better distinguish them
from the running text. Incorrect or inadvisable code examples appear
with a gray background, and correct and proper code appears with no
background.
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Item 1 Data Abstraction

A “type” is a set of operations, and an “abstract data type” is a set of oper-
ations with an implementation. When we identify objects in a problem
domain, the first question we should ask about them is, “What can I do
with this object?” not “How is this object implemented?” Therefore, if a
natural description of a problem involves employees, contracts, and pay-
roll records, then the programming language used to solve the problem
should contain Employee, Contract, and PayrollRecord types. This
allows an efficient, two-way translation between the problem domain and
the solution domain, and software written this way has less “translation
noise” and is simpler and more correct.

In a general-purpose programming language like C++, we don’t have
application-specific types like Employee. Instead, we have something bet-
ter: the language facilities to create sophisticated abstract data types. The
purpose of an abstract data type is, essentially, to extend the program-
ming language into a particular problem domain.

No universally accepted procedure exists for designing abstract data types
in C++. This aspect of programming still has its share of inspiration and
artistry, but most successful approaches follow a set of similar steps.

1. Choose a descriptive name for the type. If you have trouble choos-
ing a name for the type, you don’t know enough about what you
want to implement. Go think some more. An abstract data type
should represent a single, well-defined concept, and the name for
that concept should be obvious.

2. List the operations that the type can perform. An abstract data type
is defined by what you can do with it. Remember initialization
(constructors), cleanup (destructor), copying (copy operations),
and conversions (nonexplicit single-argument constructors and
conversion operators). Never, ever, simply provide a bunch of
get/set operations on the data members of the implementation.
That’s not data abstraction; that’s laziness and lack of imagination.

3. Design an interface for the type. The type should be, as Scott Meyers
tells us, “easy to use correctly and hard to use incorrectly” An



2 [tem 1 Data Abstraction

abstract data type extends the language; do proper language design.
Put yourself in the place of the user of your type, and write some
code with your interface. Proper interface design is as much a ques-
tion of psychology and empathy as technical prowess.

4. Implement the type. Don’t let the implementation affect the inter-
face of the type. Implement the contract promised by the type’s
interface. Remember that the implementations of most abstract
data types will change much more frequently than their interfaces.



Item 2 Polymorphism

The topic of polymorphism is given mystical status in some program-
ming texts and is ignored in others, but it’s a simple, useful concept that
the C++ language supports. According to the standard, a “polymorphic
type” is a class type that has a virtual function. From the design perspec-
tive, a “polymorphic object” is an object with more than one type, and a
“polymorphic base class” is a base class that is designed for use by poly-
morphic objects.

Consider a type of financial option, AmOption, as shown in Figure 1.

An AmOption object has four types: It is simultaneously an AmOption, an
Option, a Deal, and a Priceable. Because a type is a set of operations
(see Data Abstraction [1, 1] and Capability Queries [27, 93]), an AmOption
object can be manipulated through any one of its four interfaces. This
means that an AmOption object can be manipulated by code that is written
to the Deal, Priceable, and Option interfaces, thereby allowing the
implementation of AmOption to leverage and reuse all that code. For a
polymorphic type such as AmOption, the most important things inherited
from its base classes are their interfaces, not their implementations. In

Deal Priceable
Option
AmOption EurOption

Figure 1  Polymorphic leveraging in a financial option hierarchy. An American option
has four types.



