C++ Common

Knowledge
Essential Intermediate
programming

WL 2

(B 3Chi)

(%] Stephen C. Dewhurst #

COMMON
KNOW.LEDGE |

N\ BB i Rl

Z POSTS & TELECOM PRESS

\

-
. . .

Elﬂl%ﬁ:}biéﬁﬁa (CIP) ¥l

C++smissy. H3/ () kS (Dewhurst, S. C.) 2. —bzt: ARMBHEARAE, 2007.7
ISBN 978-7-115-15568-9

[.C.. II. #... H. CEE—EFEI—EX V. TP312

TP ERRAE 1 CIP 3T (2006) % 147804 5

i AL

Original edition, entitled C++ common knowledge:Essential Intermediate Programing, 1St Edition,
0321321928 by DEWHURST,STEPHEN C., published by Pearson Education, Inc, pubhshmg as
Addison Wesley Professional, Copyright © 2005 by Pearson Education, Inc. :

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
retrieval system, without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD. and POSTS &
TELECOMMUNICATIONS PRESS Copyright © 2006.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in
People’s Republic of China excluding Hong Kong, Macau and Taiwan.

URFHEARKNEER (FEFEFESE. RIENTERNTESSHR) .

FHHEME Pearson Education GE4EHE HITER) AR HIRE. THREERENE.

CHuwrHd e (EIXLR)
¢ = [2£] Stephen C. Dewhurst
TifEgmiE ¢
¢ ANRBEPHE MM HRRIT R R s w14 5

ME% 100061 PR 315@ptpress.com.cn
FI4ik http://www.ptpress.com.cn

A3 SCA 4 BRI ER
BEBIE BRI RATH 24

9 JFA: 800x1000 1/16

Epgk: 16.5
FH: 329 TF 2007 4E 7 HE IR
EN%L: 1-3 000 4 2007 4E 7 A4LRTHEE 1 IREDRY

FERGREIES BE¥: 01-2006-6575 5
ISBN 978-7-115-15568-9/TP
EM: 35.00 8
IEEREHL: (010)67132705 ENEREHLZ: (010)67129223

ABERT C++RENNTPRWNERBA NS EZENTA, XEEMD 6950
BRI, SIEEHHEREER. ZRRE. REUE. AEDER. RITERF. FER
BEAAUREMELTNEEREAZS)IZBIDNENES, WSKXEERAERKBIAIR
HITITRILPKE, RERGEN 63 Fo B—FXRATESOIRBINIHITI N C++7R
RATHBIREBAIR. FEMXLIRA C++EERMEN “BEiR”, HLIFRKREE
BIERE, ME “WARTD”,

EBEETP. SR C++IEFBR, HES C H Java 2B REO C++2E8118Y
235,

Acknowledgments

Peter Gordon, editor on ne peut plus extraordinaire, withstood my kvetch-
ing about the state of education in the C++ community for an admirably
long time before suggesting that I do something about it. This book is the
result. Kim Boedigheimer somehow managed to keep the entire project
on track without even once making violent threats to the author.

The expert technical reviewers—Matthew Johnson, Moataz Kamel, Dan
Saks, Clovis Tondo, and Matthew Wilson—pointed out several errors and
many infelicities of language in the manuscript, helping to make this a
better book. A stubborn individual, I haven’t followed all their recom-
mendations, so any errors or infelicities that remain are entirely my fault.

Some of the material in this book appeared, in slightly different form, in
my “Common Knowledge” column for C/C++ Users Journal, and much
of the material appeared in the “Once, Weakly” Web column on seman-
tics.org. I received many insightful comments on both print and Web
articles from Chuck Allison, Attila Fehér, Kevlin Henney, Thorsten
Ottosen, Dan Saks, Terje Slettebe, Herb Sutter, and Leor Zolman. Several
in-depth discussions with Dan Saks improved my understanding of the
difference between template specialization and instantiation and helped
me clarify the distinction between overloading and the appearance of
overloading under ADL and infix operator lookup.

This book relies on less direct contributions as well. 'm indebted to
Brandon Goldfedder for the algorithm analogy to patterns that appears
in the item on design patterns and to Clovis Tondo both for motivation
and for his assistance in finding qualified reviewers. I’ve had the good
fortune over the years to teach courses based on Scott Meyers’s Effective
C++, More Effective C++, and Effective STL books. This has allowed me
to observe firsthand what background information was commonly miss-
ing from students who wanted to profit from these industry-standard,
intermediate-level C++ books, and those observations have helped to

Acknowledgments i

shape the set of topics treated in this book. Andrei Alexandrescu’s work
inspired me to experiment with template metaprogramming rather than
do what I was supposed to be doing, and both Herb Sutter’s and Jack
Reeves’s work with exceptions has helped me to understand better how
exceptions should be employed.

I'd also like to thank my neighbors and good friends Dick and Judy Ward,
who periodically ordered me away from my computer to work the local
cranberry harvest. For one whose professional work deals primarily in
simplified abstractions of reality, it’s intellectually healthful to be shown
that the complexity involved in convincing a cranberry vine to bear fruit
is a match for anything a C++ programmer may attempt with template
partial specialization.

Sarah G. Hewins and David R. Dewhurst provided, as always, both valu-
able assistance and important impediments to this project.

I'like to think of myself as a quiet person of steady habits, given more to
calm reflection than strident demand. However, like those who undergo
a personality transformation once they’re behind the wheel of an auto-
mobile, when I get behind a manuscript I become a different person
altogether. Addison-Wesley’s terrific team of behavior modification
professionals saw me through these personality issues. Chanda Leary-
Coutu worked with Peter Gordon and Kim Boedigheimer to translate
my rantings into rational business proposals and shepherd them
through the powers-that-be. Molly Sharp and Julie Nahil not only
turned an awkward word document into the graceful pages you see
before you, they managed to correct many flaws in the manuscript while
allowing me to retain my archaic sentence structure, unusual diction,
and idiosyncratic hyphenation. In spite of my constantly changing
requests, Richard Evans managed to stick to the schedule and produce
not one, but two separate indexes. Chuti Prasertsith designed a gorgeous,
cranberry-themed cover. Many thanks to all.

A Note on Typographical
Conventions

As mentioned in the preface, these items frequently reference one
another. Rather than simply mention the item number, which would
force an examination of the table of contents to determine just what was
being referenced, the title of the item is italicized and rendered in full.
To permit easy reference to the item, the item number and page on which
it appears are appended as subscripts. For example, the item referenced
Eat Your Vegetables [64, 256] tells us that the item entitled “Eat Your Veg-
etables” is item 64, which can be found on page 256.

Code examples appear in fixed-width font to better distinguish them
from the running text. Incorrect or inadvisable code examples appear
with a gray background, and correct and proper code appears with no
background.

C— AR BTG BN EM AR, TR d AP A BT R

—— T3y - ki
L RTHREE, ERESRE,
R AE - B
...... — R O AR TR AR, RRLRARRER D,
——E. B. 4§

Herb Sutter #F C++ Report [14a%E T/EERIRBMIBE A 25 —NEE, EHEBEKE.
BKiZER LA “Common Knowledge (H1H)”, F Herb HIER UL, ZETRETUAN “Xt
RN CHFEF 5 N2 A58 B R 2 5 2 4008 Y ZE Al AR 2 e SRR 7. SR, 7ELRATR
FERIRME T — SR EE, BAERIGHFE (template metapro gramming) F2 A) D
H#RE, #imtE “Common Knowledge” i 8 i) — 4 3 SIEF 29 “ Common” ERRERIZT .

R, 1 CHIRFWRITTL, AWM & XA T 42 0) B R AE . ZETRIFE VIR
B TAEF, HHESBE THILERAR:

o FEER, MIREREN C BFR, BX CHRF—EEARKIA GFrREx)
CHHEEE);

« HENRZEXRWFTF, MNFAT, B3 C+HHE5 REHER LRAIAR, 8= C+—+
I REK

o BREZWK Java BT R, MAEDER CHEK, HFH L Java SR kRN
CH+YmFE B 7] 5

s CHIEFF R, MTRFETELY T CHNABEFHNER, BEMNKREZIT%E
H 44 B 75 B A 9 Bl A4 S R B Pk K

CH+ibh b s (FEXHIR)

WA EES T ZIHAT R TAE, (B2 RISV ALER fE I AENL 52
B, BEEEZEFERENET CHE TR B A RERARNEHE . 0L,
RAREE KL B CHRTEEE D2 T Hh— AT R, FHAR&EKRZH CHEFITA
AR i TR

XABH TR BB L@ 8, SR T 58— BNL CHEF R & ZAIE
HIEAR, R RS 4 2 A R MBS w TR A i . e rp AR AR BT AL
MRk, TR AR T 55 % CHIER R AE KRB SUE B S BEHE. &
BHRAAE TR X LR E b F—Ab, HFRIBREEMEEMERHET T#E. 28
FW, XEE SR, MR MBOR AR B BOR M R R R A .

WA 63 MELARREENMTET EMNEERRTE, TMAREN
AEMZETE. WL EEE T LISEHT B2 mii8 . Ve R R IX e 53 Je ki RAE— itk
HIRER T RE 2R S, (AX—A BB S E AT & FREITR T e E AL
FriEM . ABREEHT RRETRE AN EEI SR “RRE” KRR RAE
BT B CH R b T A R4, SRR BELK CHIEFT THRARE
BTG T o — e B E EE A AR AR Kiid, (AR REHRL
FRPGEH AL W IR E P ik CHATE IR .

BEXABE A — APk B TRE - RESW ER—#E CHERKRIE. X&ET
KT — R BURE N, FREMATAABNR CH_IESR, UET “Hi” B &R
E2RREIEME T (Hohn, ERRAMA AR LTI INEFH0ERB. RN, X
S YR CHREFR TEZHIIR). ARER, MZURHERMKSEH L
HFART, BAGEHEHERSHELR . RAITXLE “LK7 18 CRAFEZAER FE,
S2fr b, fHH CHRFERZU—] GEBLL CHERKD BRESHHE S, RERNAR
SEAMHTRATFT YIS — G RIEES . ABARWHIAN—EELE, BRNEEES
B A 1 SE B T RE LR BT AR, B B H A E SRR R BT B AR

A e—TF R ER . AXTHRBEHR EHE TR —PhrEscr, 59 THS
CHEF—8E (BEL3E), RN, JEATEN 0 TR

void £ (int)z

volid. £('const char *");

Lfenh

f("Hello");

— NP CHFEF B AN AT B A AE R — AN £ AR A . A DR EE R K5 F A A U
g SE AT 24 4R B LI, EAR D BB X AME B IS A T H A 2 F L RIR BRI C++
BRI

IR R BAF BT MR ER R R, e “RATRER R, EAE M
1E CHERFE UL BAT A HAL B NF KIS HiEsh s, 2 EENATHEEEE R TR

W F

Eo dAh, EHARR—A “HUR” . BRI A OIS H 5 B R R 3R A P 3
HREWKMTE. REFXEEE, HFASHEHIIZR, REEFEE 5RFZR—H.
BINAHATWANRENFREENEREA LSE, Ad2BTEOHEANEOmE.

A IVF 2 Sk iR R R — e A AR, XSRS RRY R BB, HE
FeHBIRT (40 A R BB R AE BT . ES (override) FE# (overload) Z[AJH
X A%, 5 Ao 4 2k ISR AR L8 TEAE oA BRY. C-HHRE - 53 BT A 75 AR EL 6 U 1R
A Ay 3k T R o 77 3 A A P AR (B G B8 A5EAR JR #8474k (template partial specialization) Al
HRR MR 230 (template template parameter) %), 4B F| T —LL P H R A KL
Y, SIRAEBR A8 EE R RIREZ (A 2BH 1/3), TXEEERIFEER R “FiR7.
R, HhE—MERNHRHE —HIEE LR BN %G E TARZ . Al
(R, XEEFILFREES, 8 MIERAXNERTERDOH A HFE

XA A BT A BB RES: o BIFA NN —AL B8 N A — 5K
PRI EBE— AT En, RATREA M ESABATH A LK. B, WRFE A
HXNEMERREEARARE, BRANFEEABNZSNTZa0. BERE A3 DERE
FANEE, RERFEMEBN—NEFHAERMEE, XHEBRFREEE —LREHUIR
R B — 2 I Z E BB . XA PR RRIERE —MEH, BHMETUTNTE EFLKH
CHFEF R E BT E] . ARLERET CHHREF IR o R IARAT]— P-4 o) B2 RI AR B IR B, A
TR TAATE S TAE. HE OB —3 (CHOBMLEY, FRMBITIBIXA HE” K
B2 77 AL HiX L CHEFRTH KEMNE, iR CNEREKRHEERT R
) 1) R b, T) i R TR SRR R

FEBAERIX 63 MEKSABESES, MHEESHEMER, HXELKECH
FHARX AWK, ENVERTHEERAE—R. X—RNE, AYBREE, FLllf Sl
TEE. 2407, SREMBIEEEARNETIVRT ML 8RN —AH; A 4H
B, “BEH AW, “FREF R B X7 “ EMIIE R $5 Prototype 13X 7. “ Factory Method
B DK “PVRIREIEE” XJAFRZ AR RBEHERE SHTER, HtELT<H
iR, “IREFEAR” M “HEeIRE” BAE—RIL, MARABIRTARBREIH KTaE
FBA T BRI —iE. SHBEXEHEN T XL BRKSA L, ik & &K
HH4E. 48, XEEFW LN ESEZ FFAETFZHMAAHTRR, K2R RRLEINF
XMECARILHRE), P& EME HMAMREXGIH. BrLlit, el — M REERHE
ERERIEFEA.

REABEERFEIR T EELE /DGR, B — D EEMIHEE N SR — L)
PERIANY, REBNIRERATHE N A EEA K. ST ZEBRHE kU, X+
FHARLTH, (EEE B E R B FElREARRAAE. i, EF L&A H
L) Heap AR nI LAk {E T 4% 20 FHER D YTCBIM STL MM, mxt
placement new i /2] 8 H V2 bR A 2R ZE A4 B FH 21) R 2 R v X BEROR JEAE . HEEIX

CHbknsh 4 (EXR)

LA RKIB AR, Bt SR AN EIEE e RAREMEE R AL &H . K
B, 43K “RAIL” A T XA B SO T A4 bR E0B0E TP 1 T T8, 43K “BER LS4
T WHE T A TR BRI B R B A, K “TRMERTVIZR A IEAAR” VR T
XHE RS R ITHE . IABRISAHE ERAES B, HE, MERXERENRK
53—, MBS R AR % O E T &N L Xz H, FEF
B T . R R SOX L 4R

FARMG RN T JLAMBE A F A B IX PR 3K v 1 XA BYER /. HFRI A K
W AFRHEREAR R BT i 88, B L REAE, mEF AT, ENKHIRARAT
TR — L8 WA R AR, JFRiX L B EEN, NMEiEsE k% m %L ME LM
K.

UG R AE — i PR P R B B A A ¥ % B OB R — R 7 B B BRA I w AR S
A —&84r, [Ft Shape. String. Stack PLRATATHARN WA “BIL” #H——F . HX
LEFLAED) T8 IR, T LU BRATT 8 A8 A5 A8 FH B 0 A v 2%k o 481 2 e AB FR A5 24 rotate
(JiE¥%) —A> Shape, FRT «eeee- ZAN7, B CMIEREPA String Hfeeeee 7K LE WL B
BIESTACH, LB RIS B, Heln “OREN5E 24 UR K L 35 B 4 I R 0 g 2
H}E’ ﬁﬁ%ﬂi ”

MBLAHTE B BAIE, A1 B 38 G A 35— Lo R 1 SR A2 SE B DA K N CH+HE S i1
R FIPPA—R R H AL — LB B bR, HP B —SERRIIT“S2HBEH” 2% CR
i, BIHBEATBERIHE R U ABIR, ABPEREE T R miEe g, BR
AW —H). —fiE, AP ENETURTREEM T R a5 FRE = ng% CHH‘E
BARBIA R .

Stephen C. Dewhurst
LE#EEMN FAR

Contents

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10
Item 11
Iltem 12
Item 13
Item 14
Iltem 15
Item 16
Item 17
Item 18
Item 19
Item 20

Rata ADStraction ... «8&yvs «s o o 800BIMRMER & v oo £albs 1
Polymarphismcvn e v v o S SV IS ¢ o« » hb i 3
Design Patlerns. . o & 0obs e du s i v s sbi kb o v wn T5 o053 7
The Standard Template Library 1
References Are Aliases, Not Pointers 13
Array Formal Arguments 17
Const Pointers and PointerstoConst 21
Pointers tO.POINEErs ..l in . vlii v v dm it wisn ss su8v <3 25
New Cast Operators i iifiimee cvre v viininseee vsas 29
Meaning of a Const Member Function 33
The Compiler Puts Stuffin Classes 37
Assignment and Initialization Are Different 41
CORY OPEIALIONS.oos df i o ShiaiRets v s oo b it 45
FANCHION PBIRLOIS oicis o 51005 oo o nde ST S0 e Hia BgiaER 49
Pointers to Class Members Are Not Pointers 53
Pointers to Member Functions Are Not Pointers 57
Dealing with Function and Array Declarators 61
FURCLIGR QBSOS 5aid o b ai b v v o vrvind e 5 o s o 0B N 63
Commands and Hollywood 67

STL Function Objegts: . .. spi.h . wobdedsit s s 71

2 Contents

Item 21
Iltem 22
Item 23
Item 24
Item 25
Item 26
Item 27
Item 28
Item 29
Item 30
Item 31
Item 32
Item 33
Item 34
Item 35
Iltem 36
Item 37
Item 38
Item 39
Item 40
Item 41
Item 42
Item 43
Item 44
Item 45
Item 46
Item 47
Item 48
Iltem 49
Item 50

Overloading and Overriding Are Different 75
Template Method i, 77
MBIIEIDACEE .« o2 s s s wapmossssme s s mi s oy Lo 81
Member Function Lookup, 87
Argument Dependent Lookup 89
Operator Function Lookup 91
Capability Queries i 93
Meaning of Pointer Comparison 97
Virtual Constructors and Prototype 99
FactoryMethod, 103
CovariantReturn Typesciiiiiinnn. 107
PreventingCopyingcciiiiiinnnnn. 111
Manufacturing AbstractBases 113
Restricting Heap Allocation 117
PlacementiNew:' ...l 2 biA L G oo b o e e e 119
Class-Specific Memory Management 123
Array Allocation 127
Exception Safety Axioms 131
Exception Safe Functions 135
BL. GO SRRSO a8 [vh VIS Ve ow tn Wl 4 139
New, Constructors, and Exceptions 143
SERBEPOWITRIS. o 0L el Dl Lo o ODIRA L LS 145
amo.ptrisUmusual Ak v WO L L iR T, 147
Pointer Arithmetic, .. Ll o i s e an i 149
Template Terminology 153
Class Template Explicit Specialization 155
Template Partial Specialization 161
Class Template Member Specialization 165
Disambiguating with Typename 169

Member Templates oo ... 173

Item 51
Item 52
Item 53
Item 54
Item 55
Item 56
Item 57
Item 58
Item 59
Item 60
Item 61
Item 62
Item 63

Contents 3

Disambiguating with Template 179
Specializing for Type Information 183
Embedded Type Information 189
TRAIES . . oic s e s o S S e s n b w e e e Re e dnn SRS 193
Template Template Parameters 199
BOMCIES < oy i b o is vaw e mn 5w s Wi e e W Bl A 205
Template Argument Deduction 209
Overloading Function Templates 213
SEINBRE ... o csisssvnspssmenmswsnsoneon i @nyaass 217
GenericAlgorithmscciiiininnernnn 221
You Instantiate What YouUse 225
Include'Guards - on e s v 229
Optional Keywords 231
Bibliographycccoieeeiiniiasrsnrsiaesicieiinsos 235
1T L A SR U N PCPRPIG S e S B PP 237

Indexof Code Examplescooivevieiirennnonnanens 245

Item 1 Data Abstraction

A “type” is a set of operations, and an “abstract data type” is a set of oper-
ations with an implementation. When we identify objects in a problem
domain, the first question we should ask about them is, “What can I do
with this object?” not “How is this object implemented?” Therefore, if a
natural description of a problem involves employees, contracts, and pay-
roll records, then the programming language used to solve the problem
should contain Employee, Contract, and PayrollRecord types. This
allows an efficient, two-way translation between the problem domain and
the solution domain, and software written this way has less “translation
noise” and is simpler and more correct.

In a general-purpose programming language like C++, we don’t have
application-specific types like Employee. Instead, we have something bet-
ter: the language facilities to create sophisticated abstract data types. The
purpose of an abstract data type is, essentially, to extend the program-
ming language into a particular problem domain.

No universally accepted procedure exists for designing abstract data types
in C++. This aspect of programming still has its share of inspiration and
artistry, but most successful approaches follow a set of similar steps.

1. Choose a descriptive name for the type. If you have trouble choos-
ing a name for the type, you don’t know enough about what you
want to implement. Go think some more. An abstract data type
should represent a single, well-defined concept, and the name for
that concept should be obvious.

2. List the operations that the type can perform. An abstract data type
is defined by what you can do with it. Remember initialization
(constructors), cleanup (destructor), copying (copy operations),
and conversions (nonexplicit single-argument constructors and
conversion operators). Never, ever, simply provide a bunch of
get/set operations on the data members of the implementation.
That’s not data abstraction; that’s laziness and lack of imagination.

3. Design an interface for the type. The type should be, as Scott Meyers
tells us, “easy to use correctly and hard to use incorrectly” An

2 [tem 1 Data Abstraction

abstract data type extends the language; do proper language design.
Put yourself in the place of the user of your type, and write some
code with your interface. Proper interface design is as much a ques-
tion of psychology and empathy as technical prowess.

4. Implement the type. Don’t let the implementation affect the inter-
face of the type. Implement the contract promised by the type’s
interface. Remember that the implementations of most abstract
data types will change much more frequently than their interfaces.

Item 2 Polymorphism

The topic of polymorphism is given mystical status in some program-
ming texts and is ignored in others, but it’s a simple, useful concept that
the C++ language supports. According to the standard, a “polymorphic
type” is a class type that has a virtual function. From the design perspec-
tive, a “polymorphic object” is an object with more than one type, and a
“polymorphic base class” is a base class that is designed for use by poly-
morphic objects.

Consider a type of financial option, AmOption, as shown in Figure 1.

An AmOption object has four types: It is simultaneously an AmOption, an
Option, a Deal, and a Priceable. Because a type is a set of operations
(see Data Abstraction [1, 1] and Capability Queries [27, 93]), an AmOption
object can be manipulated through any one of its four interfaces. This
means that an AmOption object can be manipulated by code that is written
to the Deal, Priceable, and Option interfaces, thereby allowing the
implementation of AmOption to leverage and reuse all that code. For a
polymorphic type such as AmOption, the most important things inherited
from its base classes are their interfaces, not their implementations. In

Deal Priceable
Option
AmOption EurOption

Figure 1 Polymorphic leveraging in a financial option hierarchy. An American option
has four types.

