|HZ Books

(Z23ZhR)

[TN\SPECT-ORIENTED
SOFTWARE DEVELOPMENT
WITH USE CASES

IVAR JACOBSON
PAN-WEI NG

proi- OBJECT TECHNOLOGY

BOOCH
N JRCOBSON
RUMBAUGH

e SERIES EDITORS

Ivar Jacobson =&
(=) Pan-Wei Ng -

mmzllLHjHﬁ%i
China Machin

2 # R W B P

ETRABERRERERR

(RIZhR)

Aspect Orzented Software Eed
Development with Use Cases

lvar Jacobson
(%) Pan-Wei Ng =

English reprint edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: Aspect-Oriented Software Development with Use
Cases (ISBN 0-321-26888-1) by Ivar Jacobson and Pan-Wei Ng, Copyright © 2005.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

2 45 % 3 BSENIR diPearson Education Asia Ltd. ¥AUHLME Tl HARM SRR AR . &
ZHREBHET, FEUMEMLREHRDRFENAE.

{XRRT- e A RIEFEEAN (RGP REE. BITHNTRENTEEERK)
HERIT.

A E A Pearson Education (34 & HAER) BOLPR%E, TinEH
T EHE.

IR . AUEE.
FHEEmME Jbm RA RS SR

ABRENEFIC S AF: 01-2005-4833
EHERSE (CIP) ¥iE

T RGN R EEETF R (R3R) 7 (%) B&AFF (Jacobson, 1.) HHE.
-4k HUR Tk tHAk#L, 2006.1

(2 MFERRBE)

H 4B Aspect-Oriented Software Development with Use Cases

ISBN 7-111-17771-1

1% 0. % OEKFETR-¥X V.TP3ILS
H E AR A B I CIPER B F (2005) 581274635

BULBR Tk SRR L (EstidERE 75 FEAH#§229 HBBCZRES 100037)
g RigE

L RUEREENRIA PR A RIENRY - FieBEI R TR ET
20064 1 A% 1 RE 1 kEREI

718mm x 1020mm 1/16 - 28.25E013k

E[i#: 0001- 3 000/}

& 55.005¢

LMASS, mEHAT. B, 5, AAETHiAR
AHWHHLL: (010) 68326294

EhRE 6915

YZE%&%,ﬁ@%ﬁ%ﬁ#ﬁ%ﬂ%i%&%%*ﬂﬁ,&Eﬁ@iﬁﬁ
%ﬂ#%%¢%ﬁﬁﬁ?@ﬁﬁ%ﬁ%;&E%ﬁ#%%%,ﬁiﬂﬁﬁﬁﬁﬁﬁ
E%#+§$E&i$ﬂ‘ﬁ%m%oﬁﬁ%%mﬁﬁ¢,%@%Fﬂﬁ%ﬁﬁﬁ
@*ﬂﬁ%%%%,ﬁﬁm%ﬂ*WW%%W%#WW%%ﬂWﬁ&%%%Wﬁ,
$%ﬁF$%%ﬂﬂ%%¢,Kﬁ%ﬂTm%%ﬁﬁ,E%%Tﬁﬁﬁﬁﬁ,%E
WFERBE, XAH%EE, ENEFTSRER R TRE.

ﬁﬁ,Eéﬁ%ﬁ%kﬁ%ﬁ%T,ﬁ@%ﬁ%ﬂ?ﬂiﬁﬂﬁ,H?ﬂAi
W%*Eﬁﬂwoﬁﬁﬂﬁﬂﬁﬁﬁﬁﬂﬁﬁﬂ%%ﬂﬁ,&ﬂﬂﬁ;W?ﬂﬁﬁ
%E&Eﬁﬁﬁ%ii@#ﬂ%ioEﬁ@%ﬁﬁ*ﬁ@ﬁ@ﬁﬁ‘&ﬁAﬁﬁ&
m%ﬁT,%@%ﬁﬁEiﬁﬁﬁﬁﬂﬂ%%E%R+$ﬁﬂﬁm§ﬂﬁﬁ%ﬁw
5@%%52%0E%,ﬂﬁ—ﬁ@%%%ﬁ%ﬂﬁﬁ%ﬂﬁ@Hﬁﬂﬁ§$&m
ﬁﬁﬁﬂﬁ%ﬁ%ﬁm,&%5ﬂﬁﬁﬂ\ﬁ&ﬁﬁ%ﬂﬁﬂ%k%%ﬁmz%o

ﬂmiﬂmﬁﬁﬁﬁﬁiﬁﬁﬁmﬁaﬁﬁﬁmﬂ“Hﬁ%%ﬁﬁ%%ﬂ Z]
W%ﬁﬁ%,@Eﬁﬂﬁ%lﬁiﬁMETﬁﬁ\ﬁﬁ@%%ﬁﬁﬁtoﬁﬁﬂﬁ
MIAWSE H, Ff15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan
memm%ﬁﬁ%@&ﬁﬁaﬁiTﬁﬂ%%ﬁ%%,A?ﬁﬂﬁ%&ﬁﬁﬁﬁ*
$% tH Tanenbaum, Stroustrup, Kernighan, Jim Gray% KIF AR —# 2 8ES,
u“H§Mﬂ%M#”%E%&ﬁ,&ﬁ%%ﬂ‘mﬁﬁﬁﬁokﬂﬁﬁﬁ%ﬁﬁ,
WIEABL T X M 5005 b Fakk 1.

“Hﬁﬂﬂ%&%”%mﬁlﬁﬁﬂT@W%%%%%ﬁ§%,@WW?%K&
ﬁ#T*ﬁ%ﬁﬁﬁﬁ,ﬁKﬁ%%ﬂﬁETﬂﬁﬁﬁ&%Iﬁ;ﬁﬁ%%ﬁ%&
ﬁﬁ%ﬁﬂﬁ%ﬁ¢@m%%,ﬁ%ﬁ?ﬁ%ﬁ#%*%$@ﬁoﬁﬁn“H%ﬂﬂ
#&#”E%&ﬁTﬁﬁ&%ﬁ,ﬁ%#ﬁ&&%*ﬁiTﬁﬁ%ﬂm,#ﬁﬁ?
%&%m%mﬁﬁﬁmiﬁﬁﬁ,%%~iﬁﬁ5ﬁ@ﬂ??¥%mgmo

%E%ﬂﬁ&%@i%%ﬁﬁﬁ&ﬁ%%ﬁ@ﬁ,ﬁﬁﬁ%@%ﬂﬁﬂ&ﬁ%
%iﬂﬁ%ﬂﬁA*?%%M&e%%,ﬁﬁﬁﬁ%ﬂkﬂﬁﬁﬂ%ﬁﬁyﬁ“ﬁ
ﬁﬁﬁ”%&ﬂﬂZTﬂ%EA§WWHHMﬁH:%“ﬂﬁﬂﬁ%&%”Z%,
ﬁ%@ﬁ%ﬁﬁ,M$ﬁFﬁﬂ“%ﬁﬁﬁﬁﬁ”;EW,Wﬁéiﬁﬁ%ﬁ#ﬁ
3#“&MMWONM%”%ﬂﬁ&“é%%ﬁ%ﬂ%@%ﬂﬂ;%Tﬁﬁﬁzﬁi
#mﬁﬁﬁ,ﬁﬁ&%TEﬂ%%#&ﬂ%%ﬂﬁ%,@ﬁﬁﬁ%%T*@ﬂ#%‘
%ﬁkﬁ.ﬁﬁké\@%ﬂﬁk%»iﬂk%\tﬁﬁﬁk%\ﬁﬁk%‘ME

iv

o, hERHEAE. BRETLAY. BREERYE. PEARKE. LI
Gk, JeRibm k. k¥, MREBLKRYE. MMKE. BALTHb.
o B R % 2 BUPEIASE il % B N IR A K RO RHBF LA 7 T BLHLAO % A Gk)
% paa R “ERESBENE", HRMMHBELEME LAHREE .

X =250 35 R I B 2R EAR Y O R AMR B I S B, AE AR RLR
FEE R ECE E SITHEN. K iF £ BT NM. 1. T, Stanford, U.C. Berkeley,
C.M. U. B RAMKEFHEA. MUKETEFRT. JESH. RIEALK. i
BHE RSN, BEE. KRR, K4 TE. BEY. aE5WE. EBREE
ER RS HEN S R OIRR, MASAKA—ANHAEFTRIEE
YE. HHHE=HERAE. ANOHAHROLERRERA. 15X 5 EBE
WL AERIEEI 2T, X LEEHELRENERPRBERAE.

RERMES. 2RNEM. —RKNEE. PROEE. HEngEE, XSERE
ERMWERE TREOEIE, AROMEFRERERE, fiRKRNERLERLRN
BEx AR BRI EERNE. EHNOHERRRNMEERSMEN. LEAF
ol Z Uik E BRI TR BB KA TIHE, RIOWBRAGEMNT:

B, AR f: hzjsj@hzbook.com
BEZEHIE: (010) 68995264

BERy: ERTERE AL RS
M B 4RED: 100037

ERIBGE

(et EC 2 WL)

RS
HEF
FIF R
¥
&V

ER

£ M8

= O
pAY

XA
X%

X £
% B
W AF
B4
N
WA=

Praise for Aspect-Oriented Software Development with Use Cases

“A refreshingly new approach toward improving use-case modeling by fortifying it with
aspect orientation.”
—RAMNIVAS LADDAD
author of Aspect] in Action

“Since the 1980s, use cases have been a way to bring users into software design, but trans-
lating use cases into software has been an art, at best, because user goods often don't
respect code boundaries. Now that aspect-oriented programming (AOP) can express cross-
cutting concerns directly in code, the man who developed use cases has proposed step-by-
step methods for recognizing crosscutting concerns in use cases and writing the code in
separate modules. If these methods are at all fruitful in your design and development prac-
tice, they will make a big difference in software quality for developers and users alike.”
—WES ISBERG
Aspect] team member

“This book not only provides ideas and examples of what aspect-oriented software devel-
opment is but how it can be utilized in a real development project.”
—MICHAEL WARD
ThoughtWorks, Inc.

“No system has ever been designed from scratch perfectly; every system is composed of
features layered in top of features that accumulate over time. Conventional design tech-
niques do not handle this well, and over time the integrity of most systems degrades as a
result. For the first time, here is a set of techniques that facilitates composition of behavior
that not only allows systems to be defined in terms of layered functionality but composi-
tion is at the very heart of the approach. This book is an important advance in modern
methodology and is certain to influence the direction of software engineering in the next
decade, just as Object-Oriented Software Engineering influenced the last.”
—KURT BITINER
IBM Corporation

“Use cases are an excellent means to capture system requirements and drive a user-centric
view of system development and testing. This book offers a comprehensive guide on
explicit use-case-driven development from early requirements modeling to design and
implementation. It provides a simple yet rich set of guidelines to realize use-case models
using aspect-oriented design and programming. It is a valuable resource to researchers and
practitioners alike.”
~—DR AWAIS RASHID
Lancaster University, UK., and author of
Aspect-Oriented Database Systems

“AOSD is important technology that will help developers produce better systems. Unfortu-
nately, it has not been obvious how to integrate AOSD across a project’s lifecycle. This book
shatters that barrier, providing concrete examples on how to use AOSD from requirements
analysis through testing.”
—CHARLES B. HALEY
research fellow, The Open University, U.K.

Preface

What Is Aspect-Oriented Programming?

That you have picked up this book tells us that you are a member of the
software development community: a tester, a developer, a project leader, a
project manager, an architect, an analyst, or a member involved in one of
the many other aspects of developing. We also know that you are someone
who wants to improve the way you develop software. You want your sys-
tem to be more maintainable, more extensible, more reusable, and if you
are a project leader, you want your team to be more productive. You know
that these goals are not always easy to achieve.

Why is software development so difficult? One reason is that there are
many things to watch out for. On the human side, you have to watch out
for time, budget, resources, skills, and so forth. Frequently, as a team
member, you have many tasks—some of them beyond what you are paid
for. You report to two different people and each expects 100 percent from
you, so you must give 200 percent to your work. As the developer, you
must understand the application, the domain, and the idiosyncrasies of
the platform. When you design the system, you need to deal with and bal-
ance many difficult concerns: how the system meets its intended func-
tionality, how it achieves performance and reliability, how it deals with
platform specifics, and so forth. You may find that your code—your

viii PREFACE

classes, your operations, your procedures—must perform many func-
tions, which may lead to spaghetti code, an indication of poor design. So,
you need to improve design—improve modularity and provide better sep-
aration of concerns. Just as each team member must be clearly focused on
his or her work, each component, each class, each operation must be
focused on what is its specific purpose.

But there is a limit to what you can do with existing techniques. No matter
how far you go, you find that many parts of your system have code frag-
ments that have to do with logging, authorization, persistence, debugging,
tracing, distribution, exception handling, and other such tasks. Some-
times, a sizeable portion of an operation or class has nothing to do with
what it is supposed to do. Aspect-oriented programming (AOP) refers to
such redundancy as crosscutting concerns because you find these code
fragments in many operations and classes in your system—they cut across
operations and classes. Crosscutting concerns are not limited to the tech-
nical concerns such as authorization and persistence. They include sys-
tem and application functionality, and you find that a change in
functionality often results in changes in many classes too.

AOQP gives you the means to separate code that implements crosscutting
concerns and modularize it into aspects. Aspect-orientation provides the
mechanism to compose crosscutting behaviors into the desired opera-
tions and classes during compile time and even during execution. The
source code for your operations and classes can be free of crosscutting
concerns and therefore €asier to understand and maintain.

What Is Aspect-Oriented Software Development?

In order to progress beyond AOP, you need a holistic approach to develop-
ing software systems with aspects from requirements, to analysis and
design, to implementation and test. This is aspect-oriented software
development (AOSD).

AOSD is about better modularity for the entire system, encompassing con-
cerns of many different kinds—better modularity for functional require-
ments, nonfunctional requirements, platform specifics, and so on—and
keeping them separate from each other. Keeping all concerns separate

PREFACE Ix

allows you to construct systems that have a more understandable struc-
ture and are easily configured and extended to meet the evolving needs of

stakeholders.

AOSD is not just AOP. It encompasses a whole range of techniques to help
you achieve better modularity. These techniques include object orienta-
tion, component-based development, design patterns, object-oriented
frameworks such as J2EE and .NET, and more. AOSD does not compete
with existing techniques but is built on top of them.

AOSD with Use Cases

How do you conduct AOSD? How do you identify aspects? When do you
use classes as opposed to aspects? How do you specify aspects? You need a
sound and systematic approach to help you conduct AOSD. The develop-
ment community is crying out for this kind of systematic approach to soft-

ware development.

In fact, there is such a systematic approach—and a mature one too. It is
called the use-case-driven approach. It provides a sound method for
developing applications by focusing on realizing stakeholder concerns
and delivering value to the user.

It is well known that aspect orientation helps modularize crosscutting
concerns during implementation, but there is a need to modularize cross-
cutting concerns much earlier, even during requirements. Use-cases are
an excellent technique for this purpose. Use-cases are crosscutting con-
cerns, since the realization of use cases touches several classes. In fact, you
can model most crosscutting concerns with use-cases, and we demon-
strate use-case modeling in the book.

The underlying concept in aspect orientation is similar to the concept of
use-case-driven development. This means that you get a seamless transi-
tion from expressing requirements of stakeholder concerns with use-cases
to implementing them with aspects.

Briefly, you conduct AOSD with use-cases as follows: You model crosscut-
ting concerns with use-cases. You design use-cases in terms of overlays on

PREFACE

top of classes—overlays called use-case slices and use-case modules. You
use aspect technology to compose use-cases slices and use-case modules
to form the complete model for the system.

We use a home-construction analogy to explain the approach further. Let’s
say you have a new house, but it is just an empty house with no fixtures—
no lights, no phone lines, no wiring, no gas, and no Internet! Each missing
fixture or service is a distinct concern, evidenced by the fact that you need
to call different specialists to install each fixture or service. The fixtures
and services are crosscutting concerns—they cut across different rooms
(i.e., objects). They are analogous to use-cases. To determine how he or
she will go about his or her job, each specialist must design a plan, often in
terms of a diagram based on the floor plan. The floor plan shows where
the rooms and the walls are. The electrician makes a photocopy of the
floor plan and draws how she intends to install electric wiring; the
plumber sketches out how he plans to run water pipes around the house;
and so on. Each specialist can work separately, but all of them base their
work on the same floor plan. The overall work to be done is the sum of all
these diagrams.

If each specialist were to draw his or her diagram on a transparency, the
transparencies could be merged by overlaying them on a projector. These
overlays are analogous to what we call use-case slices and use-case mod-
ules. As long as the overlays are based on the same dimensions of the floor
plan, you can get a perfect image on the screen showing all the work to be
done. If there is a need to change the laying of Internet lines, you just
rework the overlay that describes that plan and update the merged model.
When you project it with the other overlays, you get the updated image of
the house. You can easily stack more overlays on the picture or swap in
and out overlays. You get a coherent image provided that the dimensions
correspond to each other. This represents the architectural work involved.

Systems developed using use-case slices and use-case modules have a
clear separation of crosscutting concerns. You can evolve them and extend
them. It is easier to make each slice reusable. You can automatically gener-
ate certain slices because they do not interfere with other slices. You get
better maintainability, better extensibility, and greater productivity with
this approach.

PREFACE xi

The development community can gain even more from conducting AOSD
with use-cases. We believe that the adoption of aspect orientation will
accelerate significantly by basing it on the use-case-driven approach
because this approach has already been widely accepted as a means to
drive system development, testing, and delivery. Much literature on the
use-case-driven approach is readily available for the development com-
munity. A good number of professionals, even companies, exist primarily
to instruct and promote its use. Project teams both large and small have
been successful in adopting the approach. Thus, it is attractive and even
natural to base AOSD on the use-case-driven approach.

What This Book Is

This book systematically outlines how to conduct AOSD with use-cases.
We cover requirements, analysis, design, implementation, and test. We
demonstrate how to model crosscutting concerns and aspects with UML
and how to establish a resilient architecture that is based on use-cases and
aspects. We highlight key changes in practice and the paradigm shifts that
you must note when applying AOSD. We give pointers on how you can
quickly reap the benefits of AOSD in your projects.

We demonstrate how you conduct AOSD in a mixed environment of
object-oriented frameworks such as J2EE, object-oriented design pat-
terns, AOP, and so on, because we recognize that these are the challenges
you face in practice. We show you how to map aspect and use-case analy-
sis to different design and implementation technologies.

We spend a great deal of time in this book describing how to establish a
firm architecture based on use-cases and aspects—an architecture that is
resilient to changes. -

Some of you may be familiar with earlier works by Ivar Jacobson, such as
Object-Oriented Software Engineering: A Use-Case Driven Approach (Addi-
son-Wesley, 1992) and The Unified Software Development Process (Addison-
Wesley, 1999). This book should be read in conjunction with those books.

Some of you may have read books on aspect orientation and wondered
about its implications for software development as a whole. This is the

xii

PREFACE

book for you. Newcomers to aspect orientation will learn its principles
and application. If you are familiar with the use-case-driven approach,
you should readily recognize the benefits and implications of aspect ori-
entation. This book will help you to appreciate the larger context of
aspects—not just AOP, but AOSD.

In this book, we use a single example of a Hotel Management System,
which you become familiar with as we progress through the book. By
building upon a single example, we keep our'discussion of aspect orienta-
tion and use-cases focused and concrete.

What This Book Is Not

This book is not a programming book. We do not go into details about AOP
languages or aspect-oriented frameworks that are currently available. For
those details, refer to guide books and tutorials. This book is about aspect-
oriented software development (not just programming). The emphasis is
on a software development approach from requirements to code, applying
a number of techniques in a balanced and iterative manner to help you
succeed in building your software systems.

This book does not attempt to be an aspect-oriented design cookbook. We
do not attempt to discuss all conceivable crosscutting concerns (synchro-
nization, transaction management, caching, etc.). Nevertheless, we
believe that the breadth of this book provides the principles and the basis
for you to deal with many kinds of crosscutting concerns that you will
encounter in practice.

What You Need Before Reading This Book

There are several prerequisites to getting the most out of this book. You
must have at least some understanding of the Unified Modeling Language
(UML). We include some explanation of UML in this book, but we largely
expect you to know the basics. We expect you to know what classes are and
that you can read use-case diagrams, class diagrams, sequence diagrams,
and collaboration diagrams. Incidentally, the last two are called interac-
tion diagrams and communication diagrams in UML 2.0.

PREFACE xiii

If you have ever applied use-case-driven development in a project, then
you will really benefit from this book—even if you do not have any back-
ground in aspect orientation. We had you in mind when we wrote this
book and spent some time to ground you in the basics of AOP.

If you are knowledgeable about aspect orientation and have little idea
about use-case-driven development, do not fret. We have you in mind,
too. Part Il is devoted to acquainting you with use cases and use-case real-
izations.

We show some code examples in Aspect] to give you a concrete picture of
our proposed extension to the UML notation to support AOSD. Aspect] is a
language extension of Java that supports AOP. Some understanding of Java
is therefore helpful. However, we want to highlight that this is not an AOP
book. This book does not intend to teach you the complete Aspect] syntax.

Since we are showing you how to apply AOSD in a mixed environment and
how to deal with platform specifics, we need to use some platform to
make our discussion concrete. For this purpose, we chose J2EE, so some
knowledge of J2EE is useful. If you have ever heard about servlets and
EJBs, you should have sufficient background. If you know the J2EE core
patterns, better still.

So, welcome—and read this book.

How to Read This Book

We organized this book into five parts:

Part |, The Case for Use Cases and Aspects

Part I is basically an expansion of this preface. The goal is to help you
understand what AOSD with use cases is all about. We highlight some
basic cases of crosscutting—peers and extensions—and how aspects solve
them. Through some simple code examples, we introduce Aspect], which
. is currently the most popular AOP technology. We provide an overview of
use-case-driven development as it is today—what use cases are, how use
cases are realized, and how they are mapped to classes—and what we

xiv

PREFACE

expect it to be like tomorrow—with aspects, use case slices and use case
modules.

Part ll, Modeling and Capturing Concerns with Use Cases

Whether you are familiar with use cases or not, you should read Part II. It
gives you an overview of the use-case technique and clarifies common
misconceptions about use cases. Part II also enhances the use-case mod-
eling technique to provide a searnless transition from use-case modeling
to aspect-oriented analysis and design. In particular, we show how point-
cuts are modeled within use cases. Part II culminates by walking through a
rich example of applying use-case modeling to different crosscutting con-
cerns—both functional and nonfunctional. They are modeled with use
cases of different kinds—application use cases and infrastructure use
cases. Subsequent parts of the book demonstrate how to drive these differ-
ent kinds of use cases all the way to implementation.

Part lll, Keeping Concerns Separate with Use Case Modules

Part III goes deeper into the concept of use-case slices and use-case mod-
ules. Use-case slices help you keep the specifics of a use case separate in
the design model. They are the overlays we mentioned to keep crosscut-
ting concerns separate. We show you how to model use-case slices and
aspects with UML and how our extensions to the UML notation map to
AOP. We use this notation and the underlying concepts in Part IV, and the

notation is summarized in Appendix B. ‘

Part 1V, Establishing an Architecture Based on Use Cases
and Aspects

The most important determinant to the success of a project lies in its
architecture. Part IV demonstrates how to get good architecture, step by
step. Among other things, a good architecture keeps concerns of different
kinds separate. It separates the use-case-specific from the use-case-
generic, the application-specific from the application-generic; the plat-
form-specific from the platform-independent; and so on. This separation
not only makes your system more understandable and maintainable, it
also makes your system extensible. It makes parts of your system reusable

PREFACE Xv

without causing those parts to be entangled. It also provides room for sig-
nificant automation when implementing the system.

In Part IV, there are plenty of useful tips and guidelines to such an archi-
tecture. You might need to refer to Appendix B on the notations used in
the book as you read Part IV.

Part V, Applying Use Cases and Aspects in a Project

You might be at the beginning, middle, or final stages of your project: No
matter what stage you are at, you can apply the practices advocated in this
book. In Part V, we demonstrate how to tailor our approach to different
project scenarios. We also show you how to effectively manage a project
that is based on use cases and aspects.

How This Book Came About

Research papers often have many authors, and you may wonder what
each author contributed to the work. Here, we reminisce about how this
book came about and explain our individual contributions to the concepts
and pragmatics described in this book.

In the Beginning

By Ivar

The first time I heard the term aspect-oriented programming was back in
1997. I immediately saw it as an interesting technology, but at the time, I
couldn't take a serious look at. I was working on the first version of UML,
and on getting Rational Unified Process (RUP) right, and I was initiating
an effort on active software processes—actually what is now Jaczone Way-
Pointer. When I finally had time to take a good look at aspects, it was in
September 2002. I downloaded a lot of papers and studied them for a cou-
ple of days. Then I contacted Harold Ossher at IBM Research and Karl Lie-
berherr at Northeastern University in Boston. They are two of the leaders
in this space. The most well-known person on aspects is Gregor Kizcales. 1
tried to get his attention as well, but he was too busy at that time. However,
he contributed to this book by reviewing it extensively, and we benefited
significantly from his comments.

Xvi

PREFACE

In November 2002, I visited the IBM folks and spent a day with them learn-
ing about their work. After the meeting, I was very impressed and excited
about what they had done. I left their office and rushed to Newark airport;
I had to run to the gate. This is normal. I was on my way to Stockholm.
When I was seated in the plane, I ordered some champagne and began to
relax and think a little. Suddenly, it struck me. Didn't I do something simi-
lar before? Didn't I write a paper on the same subject for OOPSLA '86—the

very first OOPSLA conference?

When I got to Stockholm, I hunted for the paper. It was a paper that dis-
cussed a topic that I mentioned as future work in my Ph.D. thesis from
1985. However, the ideas in the paper had generated no interest, so I
decided to leave the subject. I felt it was too early to push those ideas and
just forgot about them. Besides, my work on component-based develop-
ment with objects and use cases was so successful that there was no room
for new inventions. However, now I wanted to find the paper. I went to the
publisher’s Web site and found it. I had to pay $95 to download it! My own
paper!

The title of the paper is “Language Support for Changeable Large Real-
Time Systems” [Jacobson 1986). In that paper, I introduced several con-
cepts—existion, which represents a base, and extension, which represents
separate functionality that you want to add to the existion. Instead of
modifying the existion to invoke an extension, we used a mechanism to
allow the extension to add behavior into the existion. Thus, from the per-
spective of the existion, no modification was needed. This meant that you
could add extension after extension without breaking the existion. The key
idea is this: By keeping extensions separate from the base from the devel-
oper’s perspective, the system is much easier to understand, maintain,
and extend.

The basic idea sounded very much like what aspect-orientation research
is trying to achieve. But I needed confirmation. Two hours after I down-
loaded the paper, I sent it to Karl Lieberherr. He responded, “Wow, Ivar,
this is an early paper on aspect-orientation.” He asked me if I had any-
thing more. Since I throw away everything I don’t work with, my first
thought was that there was nothing more. However, I was excited, and my
thoughts went back to the time before the paper. My memory asked me,
“Didn’t you file a patent for a similar work?”

