E s £ BB A HF

P el Kl o wo v

Simple Program Design
A Step-by-Step Approach

Third Edition

Lesley Anne Robertson

2 B EFHEFHBEH
i - Higher Education Press

EARRR KT REHFAH

ERIRITE

(B3R NI : EHH)

Simple Program Design
A Step-by-Step Approach
Third Edition

. Lesley Anne Robertson

BB HEHM

B . 01-2003-3468 =

Simple Program Design A Step-by-Step Approach
Third Edition
Lesley Anne Robertson

COPYRIGHT 2000 Lesley Anne Robertson. Thomson Learmng is a trademark

used herein under license,

First published by Course Technology, a division of Thomson Learning.

All Rights Reserved.

Authorized Bilingual Edition by Thomson Learning and HEP. No part of this
book may be reproduced in any form without the express written permission of
Thomson Learning and HEP. ’

5 ZEMR B (CIP) ¥

B 3EA = Simple Program Design—A Step-By
-Step Approach, Third Edition: 5§ 3 [/ () B{H
(Robertson,L.A.) . —it5: BEHEF LKA,
2003.9

ISBN 7-04-012743-1

I.27.. 01.%... I .BFEIF—%EX
V. TP311.1

RS B 4 CIP BT (2003) 5 061753 5,

HEEETT BEHFLEME MEHL 010 - 64054588

H ETEBRRENS A4S EMEHE 800-810-0598
BT 100011 [#t http: // www. hep. edu. cn
-\ H 010 - 82028899 http: // www. hep. com. cn
£ # FEBELERRITH

B Bl dEESNScERRIT

F & 787x1092 1/16 B & 200349881

Ep ¥ 23.75 BB & 200349 A% 1 KREH
£ ¥ 540000 £ #t 30.707%

ABWHERRA. BN, RAFHEREE, F2T0EBHERITREAL.
IR MR

Hhi 1R

200247H, BEFREATLERLHAFTIELN. ATRUBHLXT "BRIFEIMA
B HEERR B, SEHEFRAFBRPIRIRRXTIHENRLEFTHME " B
RBEAF RE G —NMFER . "BERXFIERAELERHEM G ARRTL2EERAKN" &
BFEHTR, BERTHBRHERFTNEEHTE, BLEASRAHFTANASXIET, HERS
B CEAMUEBR L EERBHEAE, AETLEMN. THNHEMUREAGAR I HFRHEH
REEREM. BRESIBEMIENTHREMRIGE M, A6 LS, IEENHRER:

(1) £KiF%, BANBME. RERTEBRUBERELAFEPERRE LB EREULR
LEKAA%BEXREERE "+1" HAXNITHRELAFRAAEER., KERERELH
BEVRERFTEERGER. #HF, RITIHBMERA, & "EIMARLETHAMT
#HERLE" HREE NEASHEEANRLEFTFEMALBT LEAMETERTHR,
ZEAERLETN, AZBHFEITHUMKERT (Thomson Learning) #FH HOORKHM T4
HHTRE#HM, BA—EHREE.

Q) XABRFHRE, FERATRELH TR AN N IR EREML, iy, (New
Perspectives on Computer Concepts 6ed), ## &K (HENE® (F6)R)), XTAHE
200342 ARFEEY, RFEBMANXAAATHEETRIT W REFIARRFER: HH&
WEAEMERETAEBHEASH. INER,. ZHBFEIRNRENE, KATEHNR
VHEEMUEERE, BRIISFEEMS, THEHH TR L. CAIRH. MLHK
FREEHUBFLRR, TEAERAERE-EZENHERRT R,

3) FAXERMHFTR. AL P RTEREIYRR, EA4AETENEN Tk
¥, X8, RERBTEREMY "EAER" XETHFE4L M EmER. b, E73##
M PEBEREANRGEN, BERALEMXAYERR, EANS LEEARLEFH
MAY, FABRmEARNESHEFRHE,

SIHEMANBIBRTARREERX TR L EFHAM BRIV ER, REMER
AHEE—F, &8, RNEIHESEMBRGERL L, ZRERH—STHBEMBEUEHR
B, MREERVARTEERERN S &, AR, RNZHAEEL, RESHIISHEHEE
LERELER, ARATERBRBEETHENRETARSE.

& FHH ki RAL
2003 % 5 A

Preface

With the increased popularity of programming courses in our universities,
colleges and technical institutions, there is a need for an easy-to-read textbook
on computer program design. There are already dozens of introductory
programming texts using specific languages such as PASCAL, BASIC, COBOL or
C, but they usually gloss over the important step of designing a solution to a
given programming problem.

This textbook tackles the subject of program design by using structured pro-
gramming techniques and pseudocode to develop a solution algorithm. The
recommended pseudocode has been chosen because of its closeness to writ-
ten English, its versatility and ease of manipulation, and its similarity to the
syntax of most structured programming languages.

Simple Program Design is designed for programmers who want to develop
good programming skills for solving common business problems. Too often,
programmers who are faced with a problem launch straight into the code of
their chosen programming language, instead of concentrating on the actual
problem at hand. They become bogged down with the syntax and format of the
language, and often spend many hours getting the program to work. Using this
textbook, the programmer will learn how to define the problem, how to design
a solution algorithm, and how to prove the algorithm’s correctness, before
coding a single statement from any programming language. By using
pseudocode and structured programming techniques, the programmer can
concentrate on developing a well-designed and correct solution, and thus elim-
inate many frustrating hours at the testing phase.

The book is divided into thirteen chapters, beginning with a basic explana-
tion of structured programming techniques, top-down development and mod-
ular design. Then, concept by concept, the student is introduced to the syntax
of pseudocode; methods of defining the problem; the application of basic con-
trol structures in the development of the solution algorithm; desk-checking
techniques; arrays; hierarchy charts; module design; parameter passing;
object-oriented design methodology; and many common algorithms.

Each chapter thoroughly covers the topic at hand, giving practical examples
relating to business applications, and a consistently structured approach
when representing algorithms and hierarchy charts.

This third edition of Simple Program Design contains additional material
which complements the information provided in the first two editions. A new
chapter on array processing has been included, covering single and multi-
dimensional arrays, together with common operations on arrays and algo-
rithms for their manipulation. Modularisation has been extended to cover two
chapters, with communication between modules and parameter passing intro-
duced at an earlier stage in the design process.

Two new chapters covering object-oriented design methodology have been
included in this third edition. These chapters were written by Kim Styles and
Wendy Doube, lecturers in computing at the Gippsland School of Computing
and Information Technology, Monash University. They introduce the concepts
of object-oriented design and the steps involved in creating an object-oriented
solution to a problem. Step-by-step algorithms using OO design are provided,
as well as material on multiple objects and interfaces.

Many courses now require students to be proficient in more than one
algorithm design technique. As in the first two editions, pseudocode has been
chosen as the main algorithm design technique throughout the book. However,
this third edition now offers two alternate methods of representing algorithms:
flowcharts, in Appendix 1, and Nassi-Schneiderman diagrams, in Appendix 2.
All algorithms developed in pseudocode in Chapters 2, 3, 4 and 5 have been
presented again in Appendix 1 — using flowcharts — and Appendix 2 — using
Nassi-Schneiderman diagrams.

This third edition also provides ten programming problems, of increasing
complexity, at the end of each chapter, so that teachers now have a choice of
exercises that matches the widely varying abilities of their students.

I would like to thank Kim Styles and Wendy Doube, lecturers in Computing at
Monash University, for their wonderful input on object-oriented design
methodology, Paul Moriarty, of Saranac Lake, New York, for his enthusiastic
suggestions, and my brother, Rick Noble, for his amusing cartoons at the begin-
ning of each chapter.

Lesley Anne Robertson

The Author

Lesley Anne Robertson was introduced to structured programming techniques
and top-down design when she joined IBM, Australia, in 1973 as a trainee
programmer. Since then, she has consistently used these techniques as a
programmer, a systems analyst, and finally a Lecturer in Computing at the
University of Western Sydney, NSW, where she taught computer programming
for eleven years.

Lesley now lives on a vineyard and winery in Mudgee, NSW, with her hus-
band, David, and daughters, Lucy and Salily.

SIMPLE PROGRAM DESIGN, 3RD EDITION

Contents

Preface ix

1 Program design

Describes the steps in the program development process, explains structured
programming, and introduces algorithms, pseudocode, and program data

1.1 Steps in program development

1.2 Structured programming

1.3 An introduction to algorithms and pseudocode
1.4 Program data

1.5 Chapter summary

W aN

2 Pseudocode

Introduces common words and keywords used when writing pseudocode.
The Structure Theorem is introduced, and the three basic control structures
are established. Pseudocode is used to represent each control structure.

2.1 How to write pseudocode 10
2.2 The Structure Theorem 13
2.3 Chapter summary 15

3 Developing an algorithm

Introduces methods of analysing a problem and developing a solution.
Simple algorithms which use the sequence control structure are developed,
and methods of manually checking the algorithm are determined.

3.1 Defining the problem 17
3.2 Designing a solution algorithm 21
3.3 Checking the solution algorithm 23

3.4 Chapter summary 30
3.5 Programming problems 30

4 Selection control structures E

Expands the selection control structure by introducing multiple selection, nested
selection, and the case construct in pseudocode. Several algorithms, using
variations of the selection control structure, are developed.

4.1 The selection control structure 33
4.2 Algorithms using selection 37
4.3 The case structure 44
4.4 Chapter summary 47
4.5 Programming problems 47

5 Repetition control structures

Develops algorithms which use the repetition control structure in the form of
DOWHILE, REPEAT .. .UNTIL, and counted repetition loops.

5.1 Repetition using the DOWHILE structure 51
5.2 Repetition using the REPEAT...UNTIL structure 59
5.3 Counted repetition constructs 63
5.4 Chapter summary 66
5.5 Programming problems 66

6 Pseudocode algorithms vsing
sequence, selection and
repetition

Develops algorithms to eight simple programming problems using combinations
of sequence, selection and repetition constructs. Each problem is properly
defined: the control structures required are established; a pseudocode algorithm
is developed; and the solution is manually checked for logic errors.

6.1 Eight solution algorithms 69
6.2 Chapter summary 80
6.3 Programming problems 80

7 Array processing

Introduces arrays, operations on arrays, and algorithms which manipulate
arrays. Algorithms for single and two-dimensional arrays, which initialise the
elements of an array, search an array and write out the contents of an array,
are presented.

7.1 Array processing 84
7.2 Initialising the elements of an array 87
7.3 Searching an array 89
7.4 Writing out the contents of an array 91

SIMPLE PROGRAM DESIGN, 3RD EDITION

7.5 Programming examples using arrays 92

7.6 Two-dimensional arrays 96
7.7 Chapter summary 99
7.8 Programming problems 99

8 First steps in modularisation

Introduces modularisation as a means of dividing a problem into subtasks.
Hierarchy charts and parameter passing are introduced and several algorithms
which use a modular structure are developed.

8.1 Modularisation 104
8.2 Hierarchy charts or structure charts 107
8.3 Communication between modules 108
8.4 Using parameters in program design 110
8.5 Steps in modularisation 112
8.6 Programming examples using modules 113
8.7 Chapter summary 122
8.8 Programming problems 123

9 Further modularisation,
cohesion and coupling

Develops modularisation further, using a more complex problem. Module
cohesion and coupling are introduced, several levels of cohesion and coupling
are described and pseudocode examples of each level are provided.

9.1 Steps in modularisation 127
9.2 Module cohesion 133
9.3 Module coupling 138
9.4 Chapter summary 143
9.5 Programming problems 143

10 General algorithms for common
business problems

Develops a general pseudocode algorithm for four common business
applications. All problems are defined; a hierarchy chart is established; and a
pseudocode algorithm is developed, using a mainline and several subordinate
modules. The topics covered include report generation with page break, a
single-level control break, a m'ultiple-level control break, and a sequential file
update program.

10.1 Program structure 150
10.2 Report generation with page break 151
10.3 Single-level control break 153
10.4 Multiple-level control break 156
10.5 Sequential file update 160
10.6 Chapter summary 167
10.7 Programming problems 167

CONTENTS

11 Object-oriented design

Introduces objectoriented design, objects, classes, attributes, methods and
information hiding. The steps required to create an object-oriented solution to a
problem are provided and solution algorithms developed.

11.1 Introduction to object-oriented design 175
11.2 Steps in creating an object-oriented solution 178
11.3 Programming example using object-oriented design 184
11.4 Interface and GUI objects 187
11.5 Chapter summary 189
11.6 Programming problems 190

12 More object-oriented design

Introduces the concept of multiple classes, polymorphism and method
overriding in object-oriented design. Discusses the relationship between classes
and lists the steps required to create an object-oriented design to a problem with
multiple classes.

12.1 Object-oriented design with multiple classes 193
12.2 Programming example with multiple classes 195
12.3 Chapter summary 209
12.4 Programming problems 209

13 Conclusion

A revision of the steps involved in good top-down program design.

13.1 Simple program design 212
13.2 Chapter summary 213
Appendix 1
Flowcharts

Introduces flowcharts for those students who prefer a more graphic approach to
program design. Algorithms which use a combination of sequence, selection and
repetition are developed in some detail.

The three basic control structures 215
Simple algorithms that use the sequence control structure 219
Flowcharts and the selection control structure . 223
Simple algorithms which use the selection control structure 225
The case structure expressed as a flowchart 231
Flowcharts and the repetition control structure 233
Simple algorithms which use the repetition control structure 234
Flowcharts and modules 242

0 SIMPLE PROGRAM DESIGN, 3RD EDITION

Appendix 2
Nassi-Schneiderman diagrams

Introduces Nassi-Schneiderman diagrams for those students who prefer a more
diagrammatic approach to program design. Algorithms which use a combination
of sequence, selection and repetition constructs are developed in some detail.

The three basic control structures 245
Simple algorithms that use the sequence control structure 247
N-S diagrams and the selection control structure 249
Simple algorithms which use the selection control structure 251
The case structure, expressed as a N-S diagram 255
N-S diagrams and the repetition control structure 257
Simple algorithms which use the repetition control structure 257

Appendix 3
Special algorithms

Contains a number of algorithms which are not included in the body of the
textbook and yet may be required at some time in a programmer’s career.

Sorting algorithms 264
Dynamic data structures 266
Glossary 271
Index 277

contents @

CHAPTER

Program design

Objectives ‘

e To describe the steps in the program development process
e To explain structured programming

e To introduce algorithms and pseudocode

e To describe program data

Outline |

1.1 Steps in program development

1,2 Structured programming

1.3 An introduction to algorithms and pseudocode
1.4 Program data

1.5 Chapter summary

1.1 STEPS IN PROGRAM
DEVELOPMENT

Computer programming is an art. Many people believe that a programmer
must be good at mathematics, have a memory for figures and technical
information, and be prepared to spend many hours sitting at a computer,
typing programs. However, given the right tools, and steps to follow, anyone
can write well-designed programs. It is a task worth doing, as it is both
stimulating and fulfilling.

Programming can be defined as the development of a solution to an identi-
fied problem, and the setting up of a related series of instructions which, when
directed through computer hardware, will produce the desired resulits. It is the
first part of this definition that satisfies the programmer’s creative needs: that
is, to design a solution to an identified problem. Yet this step is so often over-
looked. Leaping straight into the coding phase without first designing a
proper solution usually results in programs that contain a lot of errors. Often
the programmer needs to spend a significant amount of time finding these
errors and correcting them. A more experienced programmer will design a
solution to the program first, desk check this solution, and then code the
program in a chosen programming language.

There are seven basic steps in the development of a program. An outline of
these seven steps follows.

1 Define the problem

This step involves carefully reading and rereading the problem until you
understand completely what is required. To help with this initial analysis, the
problem should be divided into three separate components:

¢ The inputs,
¢ The outputs, and
¢ The processing steps to produce the required outputs.

A defining diagram as described in Chapter 3 is recommended in this analy-
sis phase, as it helps to separate the define the three components.

2 Outline the solution

Once the problem has been defined, you may decide to break the problem up
into smaller tasks or steps, and establish an outline solution. This initial
outline is usually a rough draft of the solution which may include:

* The major processing steps involved,

* The major subtasks (if any),

¢ The major control structures (e.g. repetition loops),
¢ The major variables and record structures, and

¢ The mainline logic.

The solution outline may also include a hierarchy or structure chart. The
steps involved in creating this outline solution are detailed in Chapters 2 to 6.

3 Develop the outline into an algorithm

The solution outline developed in Step 2 is then expanded into an algorithm: a

SIMPLE PROGRAM DESIGN, 3RD EDITION

set of precise steps that describe exactly the tasks to be performed and the
order in which they are to be carried out. This book uses pseudocode (a form
of structured English) to represent the solution algorithm, as well as
structured programming techniques. Flowcharts and Nassi-Schneiderman
diagrams are also provided in Appendix 1 and Appendix 2 for those who prefer
a more pictorial method of algorithm representation. Algorithms using
pseudocode and the Structure Theorem are developed thoroughly in Chapters
2to 1.

4 Test the algorithm for correctness

This step is one of the most important in the development of a program, and
yet it is the step most often forgotten. The main purpose of desk checking the
algorithm is to identify major logic errors early, so that they may be easily
corrected. Test data needs to be walked through each step in the algorithm to
check that the instructions described in the algorithm will actually do what
they are supposed to. The programmer walks through the logic of the
algorithm, exactly as a computer would, keeping track of all major variables on
a sheet of paper. Chapter 3 recommends the use of a desk check table to desk
check the algorithm, and many examples of its use are provided.

5 Code the algorithm into a specific programming language

Only after all design considerations have been met in the previous four steps
should you actually start to code the program into your chosen programming
language.

6 Run the program on the computer

This step uses a program compiler and programmer-designed test data to
machine test the code for syntax errors (those detected at compile time) and
logic errors (those detected at run time). This is usually the most rewarding
step in the program development process. If the program has been well
designed, the usual time-wasting frustration and despair often associated with
program testing are reduced to a minimum. This step may need to be
performed several times until you are satisfied that the program is running as
required.

7 Document and maintain the program

Program documentation should not be listed as the last step in the program
development process, as it is really an ongoing task from the initial definition
of the problem to the final test result.

Documentation involves both external documentation (such as hierarchy
charts, the solution algorithm, and test data results) and internal documenta-
tion that may have been coded in the program. Program maintenance refers to
changes which may need to be made to a program throughout its life. Often
these changes are performed by a different programmer from the one who ini-
tially wrote the program. If the program has been well designed using struc-
tured programming techniques, the code will be seen as self documenting,
resulting in easier maintenance.

PROGRAM DESIGN

1.2 STRUCTURED PROGRAMMING

Structured programming helps you to write effective, error-free programs. The
original concept of structured programming was set out in a paper published
in 1964 in Italy by Bohm and Jacopini. They established the idea of designing
programs using a Structure Theorem based on three control structures. Since
then a number of authors, such as Edsger Dijkstra, Niklaus Wirth, Ed Yourdon
and Michael Jackson, have developed the concept further and have
contributed to the establishment of the popular term ‘structured
programming’. This term now refers not only to the Structure Theorem itself,
but also to top-down development and modular design.

Top-down development

Traditionally, programmers presented with a programming problem would
start coding at the beginning of the problem and work systematically through
each step until reaching the end. Often they would get bogged down in the
intricacies of a particular part of the problem, rather than considering the
solution as a whole. In the top-down development of a program design, a
general solution to the problem is outlined first. This is then broken down
gradually into more detailed steps until finally the most detailed levels have
been completed. It is only after this process of ‘functional decomposition’ (or
‘stepwise refinement”) that the programmer starts to code. The result of this
systematic, disciplined approach to program design is a higher precision of
programming than was possible before.

Modular design

Structured programming also incorporates the concept of modular design,
which involves grouping tasks together because they all perform the same
function (e.g. calculating sales tax or printing report headings). Modular
design is connected directly to top-down development, as the steps or
subtasks into which the programmer breaks up the program solution will
actually form the future modules of the program. Good modular design aids in
the reading and understanding of the program.

The Structure Theorem

The Structure Theorem revolutionised program design by eliminating the
GOTO statement and establishing a structured framework for representing the
solution. The theorem states that it is possible to write any computer program
by using only three basic control structures. These control structures are:

¢ Sequence;
e Selection, or IF-THEN-ELSE; and
¢ Repetition, or DOWHILE.

They are covered in detail in Chapter 2.

SIMPLE PROGRAM DESIGN, 3RD EDITION

1.3 AN INTRODUCTION TO
ALGORITHMS AND
PSEUDOCODE

Structured programming techniques require a program to be properly
designed before coding begins, and it is this design process that results in the
construction of an algorithm.

What is an algorithm?

An algorithm is like a recipe: it lists the steps involved in accomplishing a task.
It can be defined in programming terms as a set of detailed, unambiguous and
ordered instructions developed to describe the processes necessary to
produce the desired output from a given input. The algorithm is written in
simple English and is not a formal document. However, to be useful, there are
some principles which should be adhered to. An algorithm must:

¢ be lucid, precise and unambiguous;
e give the correct solution in all cases; and
e eventually end.

For example, if you want to instruct someone to add up a list of prices on a
pocket calculator, you might write an algorithm such as the following:

Turn on calculator
Clear calculator

Repeat the following instructions
Key in dollar amount
Key in decimal point (.)
Key in cents amount
Press addition (+) key
Until all prices have been entered

Write down total price
Turn off calculator

Notice that in this algorithm the first two steps are performed once, before
the repetitive process of entering the prices. After all the prices have been
entered and summed, the total prices can be written down and the calculator
can be turned off. These final two activities are also performed only once. This
algorithm satisfies the desired list of properties: it lists all the steps in the cor-
rect order from top to bottom, in a definite and unambiguous fashion, until a
correct solution is reached. Notice that the steps to be repeated (entering and
summing the prices) are indented, both to separate them from those steps per-
formed only once and to emphasise the repetitive nature of their action. It is
important to use indentation when writing solution algorithms because it
helps to differentiate between the three control structures.

PROGRAM DESIGN

What is pseudocode?

Pseudocode, flowcharts and Nassi-Schneiderman diagrams are all popular
ways of representing algorithms. Flowcharts and Nassi-Schneideérman
diagrams are covered in Appendix 1 and Appendix 2 of this text, while
pseudocode has been chosen as the primary method of representing an
algorithm because it is easy to read and write. Pseudocode is really structured
English. It is English that has been formalised and abbreviated to look very like
high-level computer languages.

There is no standard pseudocode at present. Authors seem to adopt their
own special techniques and sets of rules, which often resemble a particular
programming language. This book attempts to establish a standard
pseudocode for use by all programmers, regardless of the programming lan-
guage they choose. Like many versions of pseudocode, this version has certain
conventions, as follows:

1 Statements are written in simple English.
2 Each instruction is written on a separate line.

3 Keywords and indentation are used to signify particular control structures.
4 Each set of instructions is written from top to bottom, with only one entry
and one exit. ~
5 Groups of statements may be formed into modules, and that group given a

name.

Pseudocode has been chosen to represent the solution algorithms in this book
because its use allows the programmer to concentrate on the logic of the
problem.

1.4 PROGRAM DATA

Because programs are written to process data, you must also have a good
understanding of the nature and structure of the data being processed. Data
within a program may be a single variable, such as an integer or a character;
or a group item (sometimes called an aggregate), such as an array, or a file.

Variables, constants and literals

A variable is the name given to a collection of memory cells, designed to store
a particular data item. It is called a variable because the value stored in that
variable may change or vary as the program executes. For example, the
variable total_amount may contain several values during the execution of the
program.

A constant is a data item with a name and a value that remain the same dur-
ing the execution of the program. For example, the name fifty may be given to
a data item that contains the value 50.

A literal is a constant whose name is the written representation of its value.
For example, the program may contain the literal ‘50'.

Elementary data items

An elementary data item is one containing a single variable that is always
treated as a unit. These data items are usually classified into data types. A data

SIMPLE PROGRAM DESIGN, 3RD EDITION

