With UML and (+- STEPHEN R. SCHACH

CLASSICAL AND OBJECT-ORIENTED
SOFTWARE ENGINEERING

with UML and C++

FOURTH EDITION

Stephen R. Schach
Vanderbilt University

WCB
raw
g:? McGraw-Hill
Boston e Burr Ridge, IL. ¢ Dubuque, IA ® Madison, WI e New York
San Francisco & St.Louis e Bangkok ® Bogotd e Caracas ® Lisbon
London & Madrid ® MexicoCity e Milan ® New Delhi ® Seoul
Singapore ® Sydney e Taipei ® Toronto

WCB/McGraw-Hill 2

A Division of The McGraw-Hill Companies

CLASSICAL AND OBJECT-ORIENTED SOFTWARE ENGINEERING
WITH UML AND C++
International Editions 1999

Exclusive rights by McGraw-Hill Book Co — Singapore. for manufacture and export. This book
cannot be re-exported from the country to which it is consigned by McGraw-Hill.

Copyright © 1999 by The McGraw-Hill Companies. Inc. All rights reserved. Previous editions ¢
1990. 1993, and 1996. by Richard D. Irwin. a Times Mirror Higher Education Group. Inc., company.
Except as permitted under the United States Copyright Act of 1976, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a data base or retrieval
system. without the prior written permission of the publisher.

34567 89 10 KKP FC 2 0 9

Library of Congress Cataloging-in-Publication Data

Schach. Stephen R.
Classical and object-oriented software engineering with UML. and C++ /
Stephen R. Schach.-4th ed.
p. cm.
First-2nd eds. Published under title: Software engineering.
Third ed. published under title: Classical and object-oriented
software engineering.
Includes bibliographical references and index.
ISBN 0-07-290168-3
1. Software engineering. 2. Object-oriented programming (Computer
science) L. Schach. Stephen R. Software engincering.
QAT76.758.8318 1998
005.1-dc21 98-15171

www.mhhe.com

When ordering this title, use ISBN 0-07-116761-7

Printed in Singapore

The following are registered trademarks:

Access
ActiveX

ADF

ADW
Aide-de-Camp
Analyst/Designer
Apple

AT&T
Bachman Product Set
Battlemap
Borland

Bull
CA-Tellaplan
CCC
Coca-Cola
COM

DB2

Demo 11
Emeraude
Excel
Excelerator
Ford
Foundation
FoxBASE
Guide
Hewlett-Packard
Honeywell
Hypercard
Hypertalk
IBM

IEW

IMS/360
Informix

Iona

Java

Lotus 1-2-3
Lucent Technologies
Macintosh
MacProject
Method/1
Microsoft
Motif
MS-DOS
MVS/360
Natural
Netscape

The New York Times
Newton
Nomad

Object C
ObjectBroker
Objective-C
OLE

OMTool
1-800-FLOWERS
OpenWindows
OpenDoc
Oracle

ORB Plus
ORBIX
0S/360
08S/370

0OS/VS2

Post-it
PowerBuilder
Project

PVCS

QAPartner
RAMIS-II
Rational

Rose

SoftBench
Software through Pictures
Source Safe
SPARCstation
SQL

Statemate

Sun

Sun Microsystems
SunView

System Architect
Teamwork

UNIX

VAX

Visigenic
VM/370

VMS

The Wall Street Journal
Windows 95
Word

X11

XRunner

PREFACE

The title of this book, Classical and Object-Oriented Software Engineering with UML and C++, is
somewhat surprising. After all, there is virtually unanimous agreement that the object-oriented paradigm
is superior to the classical (structured) paradigm. It would seem obvious that an up-to-date software
engineering textbook should describe only the object-oriented paradigm, and treat the classical paradigm
at best as a historical footnote.

That is not the case. Despite the widespread enthusiasm for the object-oriented paradigm and the
rapidly accumulating evidence of its superiority over the classical paradigm, it is nevertheless essential
to include material on the classical paradigm. There are three reasons for this. First, it is impossible to
appreciate why object-oriented technology is superior to classical technology without fully understanding
the classical approach and how it differs from the object-oriented approach.

The second reason why both the classical and object-oriented paradigms are included is that tech-
nology transfer is a slow process. The vast majority of software organizations have not yet adopted the
object-oriented paradigm. It is therefore likely that many of the students who use this book will be em-
ployed by organizations that still use classical software engineering techniques. Furthermore, even if
an organization is now using the object-oriented approach for developing new software, existing soft-
ware still has to be maintained, and this legacy software is not object-oriented. Thus, excluding classical
material would not be fair to the students who use this text.

A third reason for including both paradigms is that a student who is employed at an organization
that is considering the transition to object-oriented technology will be able to advise that organization
regarding both the strengths and the weaknesses of the new paradigm. Thus, as in the previous edition,
the classical and object-oriented approaches are compared, contrasted, and analyzed.

The Fourth Edition differs from the Third Edition in two ways. First, many new topics are introduced
in this edition. Second, the material has been rearranged to support both one- and two-semester software
engineering curricula; this is described in the next section.

With regard to new topics, Unified Modeling Language (UML) permeates this edition; this is re-
flected in the title of the book. In addition to utilizing UML for object-oriented analysis and object-
oriented design, UML has also been used wherever there are diagrams depicting objects and their
interrelationships. UML has become a de facto software engineering standard and this is reflected in the
Fourth Edition.

Another new topic is design patterns. This material is part of a new chapter on reuse, portability,
and interoperability. Other reuse topics in this chapter include software architecture and frameworks.
Underlying all the reuse material is the importance of object reuse. The portability sections include
material on Java. With regard to interoperability, there are sections on topics like OLE, COM, ActiveX,
and CORBA.

There is also a new chapter on planning and estimating, especially for the object-oriented paradigm.
The chapter therefore includes new material on feature points and COCOMO 1I.

The synchronize-and-stabilize life-cycle model used by Microsoft has been included in this edition.
The associated team organization method is also described.

vil

vitl

PREFACE

As in the previous edition, particular attention is also paid to object-oriented
life-cycle models, object-oriented analysis, object-oriented design, management
implications of the object-oriented paradigm, and to the testing and maintenance
of object-oriented software. Metrics for objects are also included. In addition,
there are many briefer references to objects, a paragraph or even just a sentence
in length. The reason is that the object-oriented paradigm is not just concerned
with how the various phases are performed, but rather permeates the way we
think about software engineering. Object technology pervades this book.

The software process is still the concept that underlies the book as a whole.
In order to control the process, we have to be able to measure what is happening
to the project. Accordingly, the emphasis on metrics is retained. With regard to
process improvement, material on SPICE has been added to the sections on the
Capability Maturity Model (CMM) and ISO 9000.

Another topic that still is stressed is CASE. I also continue to emphasize the
importance of maintenance and the need for complete and correct documentation
at all times.

The software process is essentially language-independent and this is again
reflected in the Fourth Edition. The few code examples are in C++. However,
care has been taken to make this material accessible to readers with little or no
knowledge of C++ by providing explanations of constructs that are specific to
C++.

With regard to prerequisites, it is assumed that the reader is familiar with
one high-level programming language such as Pascal, C, C++, Ada, BASIC,
COBOL, FORTRAN, or Java. In addition, the reader is expected to have taken a
course in data structures.

How tHE FOURTH EDITION Is ORGANIZED

The Third Edition of this book was written for a one-semester, project-based soft-
ware engineering course. The book accordingly consisted of two parts. Part 2
covered the life cycle, phase by phase; the aim was to provide the students with
the knowledge and skills needed for the Term Project. Part 1 contained the theo-
retical material needed to understand Part 2. For example, Part 1 introduced the
reader to CASE, metrics, and testing because each chapter of Part 2 contained a
section on CASE tools for that phase, a section on metrics for that phase, and a
section on testing during that phase. Part 1 was kept short to enable the instructor
to start Part 2 relatively early in the semester. In this way, the class could begin
developing the Term Project as soon as possible. The need to keep Part 1 brief
meant that I had to include topics like reuse, portability, and team organization in
Part 2. Thus, while the students were working on their term projects, they learned
additional theoretical material.

However, there is a new trend in software engineering curricula. More and
more computer science departments are realizing that the overwhelming prepon-

s

PREFACE

derance of their graduates find employment as software engineers. As a result,
many colleges and universities have introduced a two-semester (or two-quarter)
software engineering sequence. The first course is largely theoretical (but there is
almost always a small project of some sort). The second course is a major team-
based term project, usually a capstone project. When the Term Project is carried
out in the second semester, there is no need for the instructor to rush to start Part 2.

In order to cater to both the one- and two-semester course sequences, I have
rearranged the material of the previous edition and added to it. Part 1 now includes
two more chapters, but the material of those two chapters is not a prerequisite for
Part 2. First, Chapter 7 is entitled “Reusability, Portability, and Interoperability.”
The theme of this chapter is the need to develop reusable portable software that
can run on a distributed heterogeneous architecture such as client-server.

Second, some instructors who adopted the Third Edition have told me that
they were uncomfortable with a separate planning and estimating phase between
the specification phase and the design phase. They agreed that accurate estimates
of cost and duration are not possible until the specifications are complete (al-
though sometimes we are required to produce estimates earlier in the life cycle).
However, they felt that these planning and estimating activities did not merit a
complete phase, particularly because they comprise only about 1 percent of the
total software life cycle. Accordingly, I have dropped the separate planning phase
and incorporated these activities at the end of the specifications phase. The var-
ious planning activities that are performed are described in Chapter 8, entitled
“Planning and Estimating.” This material, too, may be delayed in order to start
Part 2. In addition to these two chapters, certain sections of other chapters (such as
Section 2.12) may also be deferred and taught in parallel with Part 2. All material
that can be postponed in this way is marked with «% .

Thus, an instructor who is teaching a one-semester (or one-quarter) sequence
using the Fourth Edition covers most of Chapters 1 through 6, and then starts
Part 2 (Chapters 9 through 15). Chapters 7 and 8 can then be taught in parallel
with Part 2. When teaching the two-semester sequence, the chapters of the book
are taught in order; the class is now fully prepared for the semester-long team-
based Term Project.

In order to ensure that the key software engineering techniques of Part 2 are
truly understood, each is presented twice. First, whenever a technique is intro-
duced, it is illustrated by means of the elevator problem. The elevator problem is
the correct size for the reader to be able to see the technique applied to a com-
plete problem, and it has enough subtleties to highlight both the strengths and
weaknesses of the technique being taught. Then, at the end of each chapter there
is a new continuing major Case Study. A detailed solution to the Case Study is
presented. The solution to each phase of the Case Study is generally too large
to appear in the chapter itself. Instead, only key points of the solution are pre-
sented in the chapter, and the complete material appears at the end of the book
(Appendices C through I). The rapid prototype and detailed C++ implementa-
tion are available via the World-Wide Web at http://www.mhhe.com/engcs/
compsci/schach.

PREFACE

| THe ProBLEM SETS

As in the previous edition, there are four types of problems. First, at the end of each
chapter there are a number of exercises intended to highlight key points. These
exercises are self-contained; the technical information for all of the exercises can
be found in this book.

Second, there is a major Term Project. It is designed to be solved by stu-
dents working in teams of three, the smallest number of team members that can-
not confer over a standard telephone. The Term Project comprises 15 separate
components, each tied to the relevant chapter. For example, design is the topic of
Chapter 12, so in that chapter the component of the Term Project is concerned with
designing the software for the project. By breaking a large project into smaller,
well-defined pieces, the instructor can monitor the progress of the class more
closely. The structure of the Term Project is such that instructors may freely apply
the 15 components to any other project they choose.

Because this book is written for use by graduate students as well as upper-
class undergraduates, the third type of problem is based on research papers in the
software engineering literature. In each chapter an important paper has been cho-
sen; wherever possible, a paper related to object-oriented software engineering
has been selected. The student is asked to read the paper and to answer a ques-
tion relating to its contents. Of course, the instructor is free to assign any other
research paper; the “For Further Reading” section at the end of each chapter in-
cludes a wide variety of relevant papers.

The fourth type of problem relates to the Case Study. This type of problem
was introduced in the Third Edition in response to instructors who told me that
they believe their students learn more by modifying an existing product than by
developing a product from scratch. Many senior software engineers in the industry
agreed with that viewpoint. Accordingly, each chapter in which the Case Study is
presented has at least three problems that require the student to modify the Case
Study in some way. For example, in one chapter the student is asked to redesign
the Case Study using a different design technique than the one used for the Case
Study. In another chapter, the student is asked what the effect would have been
of performing the steps of the object-oriented analysis in a different order. To
make it easy to modify the source code of the Case Study, it is readily available
as described at the end of the previous section.

The Instructor’s Solution Manual, available from McGraw-Hill, contains
detailed solutions to all the exercises, as well as to the Term Project. In addi-
tion, the Instructor’s Solution Manual contains transparency masters for all the
figures in this book. The transparency masters can also be downloaded from
www.mhhe.com/engcs/compsci/schach.

AT G i et e

PREFACE

ACKNOWLEDGMENTS

1 am indebted to those who reviewed this edition, including:

Thaddeus R. Crews, Jr., Western Kentucky University
Eduardo B. Fernandez, Florida Atlantic University
Michael Godfrey, Cornell University

Thomas B. Horton, Florida Atlantic University

Gail Kaiser, Columbia University

Laxmikant V. Kale, University of Illinois

Chung Lee, California State Polytechnic University at Pomona
Susan Mengel, Texas Tech University

David S. Rosenblum, University of California at Irvine
Shmuel Rotenstreich, George Washington University
Wendel Scarbrough, Azusa Pacific University

Gerald B. Sheble, Iowa State

I am particularly grateful to two of the reviewers. Thad Crews made many
creative pedagogic suggestions. As a consequence, it is easier to teach from this
book and to learn from it. Laxmikant Kale pointed out a number of weaknesses.
I am grateful to him for his meticulous reading of the entire manuscript.

I should like to thank three individuals who have also made contributions to
earlier books. First, Jeff Gray has once again made numerous insightful sugges-
tions. In particular, I am grateful for his many ideas regarding Chapter 7. Also,
he is once again a coauthor of the Instructor’s Solution Manual. Second, my son
David has made a number of helpful contributions to the book and is also a coau-
thor of the Instructor s Solution Manual. Third, I thank Saveen Reddy for drawing
my attention to the quotation from Marcus Aurelius that appears in the last Just
in Case You Wanted to Know box.

With regard to my publishers, McGraw-Hill, I am especially grateful to ex-
ecutive editor Betsy Jones, sponsoring editor Brad Kosirog, and project manager
Paula Buschman.

Finally, as always, I thank my family for their continual support. When I
started writing books, my limited free time had to be shared between my family
and my current book project. Now that my children are assisting with my books,
writing has become a family activity. For the seventh time, it is my privilege to
dedicate this book to my wife, Sharon, and my children, David and Lauren, with
love.

Stephen R. Schach

Gt

oot oo

BRrIEF CONTENTS

Preface vii PARTY 2
The Phases of the Software

Life Cycle 299

PART 1
Introduction to the Software
Life Cycle 1

CHAPTER 9
Requirements Phase 301

CHAPTER 10
CHAPTER 1 Specification Phase 329

Scope of Software Engineering 3 CHAPTAR 11

CHAPTER 2 Object-Oriented Analysis
The Software Process 30 Phase 376
CHAPTER 3 CHAPTER 12
Software Life-Cycle Models 64 Design Phase 403
CHAPTIER 4 CHAPTER 13
Teams and the Tools Implementation Phase 437
of Their Trade 90

CHAPTER 14
CHAPTER 5 Implementation and
Testing 134 Integration Phase 479
CHAPTER 6 CHAPTER 15
Introduction to Objects 171 Maintenance Phase 502
CHAPTER 7 APPENDIX A
Reusability, Portability, Air Gourmet 523

and Interoperability 217
APPENDIX B

CHAPTER 8 Software Engineering
Planning and Estimating 262 Resources 526

xiv PREFACE

APPENDIX C
Osbert Oglesby Case Study:
Rapid Prototype 529

APPENDIX D
Osbert Oglesby Case Study:
Structured Systems Analysis 530

APPENDIX &
Osbert Oglesby Case Study:
Object-Oriented Analysis 534

APPENDIX F
Osbert Oglesby Case Study:
Software Project
Management Plan 535

APPENDIX ©
Osbert Oglesby Case Study:
Design 540

APPENDIX H
Osbert Oglesby Case Study:
Black-Box Test Cases 559

APPENDIX 1|
Osbert Oglesby Case Study:
Complete Source Code 563

Bibliography 564
Author Index 597
Subject Index 603

CONTENTS

Preface vii

PARTY 1
Introduction to the Software
Life Cycle 1

CHAPTER 1
Scope of Software
Engineering 3

1.1 Historical Aspects 5

1.2 Economic Aspects 7

1.3 Maintenance Aspects 8

1.4 Specification and Design Aspects 12
1.5 Team Programming Aspects 15
1.6 The Object-Oriented Paradigm 16
1.7 Terminology 21

Chapter Review 23

For Further Reading 24

Problems 25

References 26

CHAPTER 2
The Software Process 30

2.1 Client, Developer, and User 32
2.2 Requirements Phase 33

2.2.1 Requirements Phase Testing 34
2.3 Specification Phase 35

23.1 Specification Phase Testing 37
24 Design Phase 37

24.1 Design Phase Testing 39
2.5 Implementation Phase 39

25.1 Implementation Phase Testing 39
2.6 Integration Phase 40

2.6.1 Integration Phase Testing 40
2.7 Maintenance Phase 41

271 Maintenance Phase Testing 41
2.8 Retirement 42

2.9 Problems with Software Production:
Essence and Accidents 43
29.1 Complexity 44
29.2 Conformity 46
29.3 Changeability 47
294 Invisibility 48
29.5 No Silver Bullet? 49
2.10 Improving the Software Process 50
2.11 Capability Maturity Models 50
2.12 ISO9000 54
2.13 SPICE 55
2.14 Costs and Benefits of Software
Process Improvement 56
Chapter Review 57
For Further Reading 58
Problems 59
References 60

CHAPTER 3
Software Life-Cycle Models 64

3.1 Build-and-Fix Model 64
3.2 Waterfall Model 65
3.2.1 Analysis of the
Waterfall Model 68
3.3 Rapid Prototyping Model 70
3.3.1 Integrating the Waterfall and
Rapid Prototyping Models 72
3.4 Incremental Model 72
34.1 Analysis of the
Incremental Model 74
3.5 Synchronize-and-Stabilize Model 77
3.6 Spiral Model 77
3.6.1 Analysis of the Spiral Model 82
3.7 Object-Oriented
Life-Cycle Models 83
3.8 Comparison of Life-Cycle Models 84
Chapter Review 86
For Further Reading 86
Problems 87
References 88

xvi

CHAPTER 4
Teams and the Tools
of Their Trade 90

4.1
4.2

4.3

44

4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12

4.13

4.14
4.15

Team Organization 90

Democratic Team Approach 92

4.2.1 Analysis of the Democratic
Team Approach 93

Classical Chief Programmer

Team Approach 94

4.3.1 The New York Times Project 96

4.3.2 Impracticality of the Classical Chief
Programmer Team Approach 96

Beyond Chief Programmer

and Democratic Teams 97

Synchronize-and-Stabilize Teams 101

Stepwise Refinement 102

4.6.1 Stepwise Refinement
Example 103

Cost—Benefit Analysis 109

Software Metrics 110

CASE 112

Taxonomy of CASE 113

Scope of CASE 114

Software Versions 119

4.12.1 Revisions 119

4.12.2 Variations 120

Configuration Control 120

4.13.1 Configuration Control during
Product Maintenance 123

4.13.2 Baselines 124

4.13.3 Configuration Control during
Product Development 124

Build Tools 125

Productivity Gains with

CASE Technology 126

Chapter Review 128
For Further Reading 128
Problems 129
References 131

CHAPTER 53

Testing 134

5.1

Quality Issues 135
5.1.1 Software Quality Assurance 135
512 Managerial Independence 136

52

53
54

55

5.6

57
5.8
59

Nonexecution-Based Testing 137
5.2.1 Walkthroughs 137
5.2.2 Managing Walkthroughs 138
523 Inspections 139
524 Comparison of Inspections
and Walkthroughs 141
525 Strengths and Weaknesses
of Reviews 142
52.6 Metrics for Inspections 142
Execution-Based Testing 143
What Should Be Tested? 143
54.1 Utility 144
542 Reliability 145
543 Robustness 145
544 Performance 146
545 Correctness 146
Testing versus Correctness Proofs 148
5.5.1 Example of a Correctness
Proof 148
5.5.2 Correctness Proof Case Study 152
5.5.3 Correctness Proofs and
Software Engineering 154
Who Should Perform
Execution-Based Testing? 157
Testing Distributed Software 158
Testing Real-Time Software 160
When Testing Stops 162

Chapter Review 163
For Further Reading 163
Problems 165
References 166

CHAPTER 6
Introduction to Objects 171

6.1
6.2

6.3

What Is a Module? 171
Cohesion 175

6.2.1 Coincidental Cohesion 175
6.2.2 Logical Cohesion 176

623 Temporal Cohesion 178
6.2.4 Procedural Cohesion 178
625 Communicational Cohesion 178
6.2.6 Informational Cohesion 179
6.2.7 Functional Cohesion 180
6.28 Cohesion Example 180
Coupling 181

6.3.1 Content Coupling 182

632 Common Coupling 182

6.3.3 Control Coupling 184

6.3.4 Stamp Coupling 185

6.3.5 Data Coupling 186

6.3.6 Coupling Example 186

6.3.7 The Importance of Coupling 188
6.4 Data Encapsulation 189

6.4.1 Data Encapsulation and

Product Development 192
6.4.2 Data Encapsulation and
Product Maintenance 194

6.5 Abstract Data Types 198
6.6 Information Hiding 201
6.7 Objects 203
6.8 Inheritance, Polymorphism,

and Dynamic Binding 207
6.9 Cohesion and Coupling of Objects 209
Chapter Review 210
For Further Reading 210
Problems 211
References 213

CHAPTER 7
Reusability, Portability,
and Interoperability 217

7.1 Reuse Concepts 217
7.2 Impediments to Reuse 219
7.3 Reuse Case Studies 220
7.3.1 Raytheon Missile
Systems Division 220
7.3.2 Toshiba Software Factory 222
7.3.3 NASA Software 223
7.3.4 GTE Data Services 224
7.3.5 Hewlett-Packard 224
7.3.6 European Space Agency 225
7.4 Objects and Productivity 226
7.5 Reuse during the Design and
Implementation Phases 228
7.5.1 Module Reuse 228
7.5.2 Application Frameworks 229
7.5.3 Design Patterns 230
7.5.4 Software Architecture 235
7.6 Reuse and Maintenance 235
7.7 Portability 236
7.7.1 Hardware Incompatibilities 237
7.7.2 Operating System
Incompatibilities 238

CONTENTS xvii

7.73 Numerical Software
Incompatibilities 239
7.74 Compiler Incompatibilities 239
7.8 Why Portability? 245
7.9 Techniques for
Achieving Portability 246
7.9.1 Portable System Software 246
7.9.2 Portable Application
Software 247
79.3 Portable Data 248
7.10 Interoperability 249
7.10.1 OLE, COM, and ActiveX 250
7.10.2 CORBA 251
7.10.3 Comparing OLE/COM
and CORBA 251
7.11 Future Trends in Interoperability 252
Chapter Review 252
For Further Reading 253
Problems 254
References 256

CHAPTIR 8
Planning and Estimating 262

8.1 Planning and the Software Process 262
8.2 Estimating Duration and Cost 264
8.2.1 Metrics for the Size
of a Product 265
8.2.2 Techniques of Cost
Estimation 270
823 Intermediate COCOMO 273
824 COCOMOIl 276
825 Tracking Duration and
Cost Estimates 277
8.3 Components of a Software Project
Management Plan 278
8.4 Software Project
Management Plan Framework 280
8.5 IEEE Software Project
Management Plan 281
8.6 Planning of Testing 284
8.7 Planning of Object-Oriented
Projects 285
8.8 Training Requirements 286
8.9 Documentation Standards 287
8.10 CASE Tools for Planning
and Estimating 288

xvill CONTENTS

8.11 Testing the Software Project
Management Plan 291

Chapter Review 291

For Further Reading 291

Problems 293

References 294

PART 2
The Phases of the Software
Life Cycle 299

CHAPTER 9
Requirements Phase 301

9.1 Requirements Analysis
Techniques 302
9.2 Rapid Prototyping 303
9.3 Human Factors 305
9.4 Rapid Prototyping as a
Specification Technique 307
9.5 Reusing the Rapid Prototype 309
9.6 Other Uses of Rapid Prototyping 311
9.7 Management Implications of the
Rapid Prototyping Model 312
9.8 Experiences with Rapid
Prototyping 313
9.9 Joint Application Design (JAD) 315
9.10 Comparison of Requirements
Analysis Techniques 315
9.11 Testing during the
Requirements Phase 316
9.12 CASE Tools for the
Requirements Phase 316
9.13 Metrics for the
Requirements Phase 318
9.14 Osbert Oglesby Case Study:
Requirements Phase 318
9.15 Osbert Oglesby Case Study:
Rapid Prototype 321
9.16 Object-Oriented Requirements? 324
Chapter Review 324
For Further Reading 325
Problems 326
References 327

CHAPTER 10

Specification Phase 329

10.1 The Specification Document 329
10.2 Informal Specifications 331
10.2.1 Case Study:
Text Processing 332
10.3 Structured Systems Analysis 333
10.3.1 Sally’s Software Shop 333
10.4 Other Semiformal Techniques 341
10.5 Entity-Relationship Modeling 342
10.6 Finite State Machines 344
10.6.1 Elevator Problem: Finite
State Machines 346
10.7 Petri Nets 351
10.7.1 Elevator Problem:
Petri Nets 355
108 Z 357
10.8.1 Elevator Problem: Z 358
10.8.2 Analysisof Z 360
10.9 Other Formal Techniques 362
10.10 Comparison of
Specification Techniques 363
10.11 Testing during the
Specification Phase 364
10.12 CASE Tools for the
Specification Phase 365
10.13 Metrics for the
Specification Phase 366
10.14 Osbert Oglesby Case Study:
Structured Systems Analysis 366
10.15 Osbert Oglesby Case Study:
Software Project Management
Plan 367
Chapter Review 367
For Further Reading 368
Problems 369
References 372

CHAPTER 11
Object-Oriented
Analysis Phase 376

1.1 Object-Oriented versus
Structured Paradigm 376
112 Object-Oriented Analysis 378

11.3 Elevator Problem:
Object-Oriented Analysis 380

114 Use-Case Modeling 381

11.5 Class Modeling 382
11.5.1 Noun Extraction 382
1152 CRCCards 385

11.6 Dynamic Modeling 387

11.7 Testing during the Object-Oriented
Analysis Phase 388

11.8 CASE Tools for the Object-Oriented
Analysis Phase 391

11.9 Osbert Oglesby Case Study:
Object-Oriented Analysis 393

11.10 Osbert Oglesby Case Study:
Software Project Management
Plan 398

Chapter Review 399

For Further Reading 399

Problems 400

References 401

CHAPTER 12
Design Phase 403

12.1 Design and Abstraction 403
12.2 Action-Oriented Design 404
12.3 Data Flow Analysis 405
12.3.1 Data Flow Analysis
Example 406
12.3.2 Extensions 411
12.4 Transaction Analysis 411
12.5 Data-Oriented Design 413
12.6 Object-Oriented Design 414
12.7 Elevator Problem:
Object-Oriented Design 414
12.8 Formal Techniques for
Detailed Design 420
129 Real-Time Design Techniques 422
12.10 Testing during the Design Phase 423
12.11 CASE Tools for the
Design Phase 424
12.12 Metrics for the Design Phase 425
12.13 Osbert Oglesby Case Study:
Object-Oriented Design 426
Chapter Review 431
For Further Reading 431

Problems 432
References 433

CHAPTER 13
Implementation Phase 437

13.1 Choice of Programming Language 437
13.2 Fourth Generation Languages 440
13.3 Good Programming Practice 443
134 Coding Standards 449
13.5 Module Reuse 450
13.6 Module Test Case Selection 451
13.6.1 Testing to Specifications versus
Testing to Code 451
13.6.2 Feasibility of Testing
to Specifications 451
13.6.3 Feasibility of Testing
to Code 452
13.7 Black-Box Module-Testing
Techniques 455
13.7.1 Equivalence Testing and
Boundary Value Analysis 455
13.7.2 Functional Testing 456
13.8 Glass-Box Module-Testing
Techniques 457
13.8.1 Structural Testing: Statement,
Branch, and Path Coverage 458
13.8.2 Complexity Metrics 459
13.9 Code Walkthroughs and
Inspections 462
13.10 Comparison of
Module-Testing Techniques 462
13.11 Cleanroom 463
13.12 Potential Problems When
Testing Objects 464
13.13 Management Aspects of
Module Testing 467
13.14 When to Rewrite Rather than
Debug a Module 467
13.15 CASE Tools for the
Implementation Phase 469
13.16 Osbert Oglesby Case Study:
Black-Box Test Cases 469
Chapter Review 471
For Further Reading 471
Problems 472
References 474

CHAPTER 14
Implementation and
Integration Phase 479

14.1 Implementation and Integration 479
14.1.1 Top-Down Implementation
and Integration 480
14.1.2 Bottom-Up Implementation
and Integration 482
14.1.3 Sandwich Implementation
and Integration 483
14.1.4 Implementation and Integration
of Object-Oriented Products 485
14.1.5 Management Issues during the
Implementation and
Integration Phase 485
142 Testing during the Implementation
and Integration Phase 486
14.3 Integration Testing of Graphical
User Interfaces 486
14.4 Product Testing 487
14.5 Acceptance Testing 488
14.6 CASE Tools for the
Implementation and
Integration Phase 489
14.7 CASE Tools for the Complete
Software Process 490
14.8 Integrated Environments 490
14.8.1 Process Integration 490
14.8.2 Tool Integration 491
14.8.3 Other Forms
of Integration 494
149 Environments for
Business Applications 494
14.10 Public Tool Infrastructures 495
14.11 Potential Problems
with Environments 495
14.12 Metrics for the Implementation
and Integration Phase 496
14.13 Osbert Oglesby Case Study:
Implementation and
Integration Phase 497
Chapter Review 498
For Further Reading 498
Problems 499
References 500

CHAPTER 153
Maintenance Phase 502

15.1 Why Maintenance Is Necessary 502
152 What Is Required
of Maintenance
Programmers 503
15.3 Maintenance Case Study 505
15.4 Management of Maintenance 507
15.4.1 Fault Reports 507
15.4.2 Authorizing Changes
to the Product 508
1543 Ensuring Maintainability 509
15.44 Problem of Repeated
Maintenance 509
15.5 Maintenance of
Object-Oriented Software 510
15.6 Maintenance Skills versus
Development Skills 514
157 Reverse Engineering 514
15.8 Testing during the
Maintenance Phase 515
15.9 CASE Tools for the
Maintenance Phase 516
15.10 Metrics for the
Maintenance Phase 517
15.11 Osbert Oglesby Case
Study: Maintenance 517
Chapter Review 518
For Further Reading 519
Problems 519
References 520

APPENDIX A
Air Gourmet 523

APPENDIX B
Software Engineering
Resources 526

APPENDIX ¢
Osbert Oglesby Case Study:
Rapid Prototype 529

