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Preface

Following Keller [119] we call two problems inverse to each other if the for-
mulation of each of them requires full or partial knowledge of the other. By
this definition, it is obviously arbitrary which of the two problems we call
the direct-and which we call the inverse problem. But usually, one of the
problems has been studied earlier and, perhaps, in more detail. This one is
usually called the direct problem, whereas the other is the inverse problem.
However, there is often another, more important difference between these
two problems. Hadamard (see [91}) introduced the concept of a well-posed
problem, originating from the philosophy that the mathematical model of
a physical problem has to have the properties of uniqueness, existence, and
stability of the solution. If one of the properties fails to hold, he called the
problem ill-posed. It turns out that many interesting and important inverse
problems in science lead to ill-posed problems, while the corresponding di-
rect problems are well-posed. Often, existence and uniqueness can be forced
by enlarging or reducing the solution space (the space of “models™). For
restoring stability, however, one has to change the topology of the spaces,
which is in many cases impossible because of the presence of measurement
errors. At first glance, it seems to be impossible to compute the solution
of a problem numerically if the solution of the problem does not depend
continuously on the data, i.e., for the case of ill-posed problems. Under
additional a priori information about the solution, such as smoothness and
bounds on the derivatives, however, it is possible to restore stability and
construct efficient numerical algorithms.

We make no claim to cover all of the topics in the theory of inverse
problems. Indeed, with the rapid growth of this field and its relationship to
many fields of natural and technical sciences, such a task would certainly
be impossible for a single author in a single volume. The aim of this book
is twofold: First, we will introduce the reader to the basic notions and
difficulties encountered with ill-posed problems. We will then study the
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basic properties of regularization methods for linear ill-posed problems.
These methods can roughly be classified into two groups, namely, whether
the regularization parameter is chosen a priori or a posteriori. We will study
some of the most important regularization schemes in detail.

The second aim of this book is to give a first insight into two special
nonlinear inverse problems that are of vital importance in many areas of
the applied sciences. In both inverse spectral theory and inverse scattering
theory, one tries to determine a coefficient in a differential equation from
measurements of either the eigenvalues of the problem or the field “far
away” from the scatterer. We hope that these two examples clearly show
that a successful treatment of nonlinear inverse problems requires a solid
knowledge of characteristic features of the corresponding direct problem.
The combination of classical analysis and modern areas of applied and
numerical analysis is, in the author’s opinion, one of the fascinating features
of this relatively new area of applied mathematics.

This book arose from a number of graduate courses, lectures, and survey
talks during my time at the universities of Gattingen and Erlangen/Niirn-
berg. It was my intention to present a fairly elementary and complete intro-
duction to the field of inverse problems, accessible not only to mathemati-
cians but also to physicists and engineers. I tried to include as many proofs
as possible as long as they required knowledge only of classical differential
and integral calculus. The notions of functional analysis make it possible to
treat different kinds of inverse problems in a common language and extract
its basic features. For the convenience of the reader, I have collected the
basic definitions and theorems from linear and nonlinear functional analy-
sis at the end of the book in an appendix. Results on nonlinear mappings,
in particular for the Fréchet derivative, are only needed in Chapters 4 and
5. !

The book is organized as follows: In Chapter 1, we begin with a list of
pairs of direct and inverse problems. Many of them are quite elementary and
should be well-known. We formulate them from the point of view of inverse
theory to demonstrate that the study of particular inverse problems has a
long history. Sections 1.3 and 1.4 introduce the notions of ill-posedness and
the worst-case error. While ill-posedness of a problem (roughly speaking)
implies that the solution cannot be computed numerically - which is a
very pessimistic point of view - the notion of the worst-case error leads to
the possibility that stability can be recovered if additional information is
available. We illustrate these notions with several elementary examples.

In Chapter 2, we study the general regularization theory for linear ill-
posed equations in Hilbert spaces. The general concept in Section 2.1 is
followed by the most important special examples: Tikhonov regularization
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in Section 2.2, Landweber iteration in Section 2.3, and spectral cutoff in
Section 2.4. These regularization methods are applied to a test example in
Section 2.5. While in Sections 2.1-2.5 the regularization parameter has been
chosen a priori, i.e., before starting the actual computation, Sections 2.6-2.8
are devoted to regularization methods in which the regularization parame-
ter is chosen implicitly by the stopping rule of the algorithm. In Sections 2.6
and 2.7, we study Morozov’s discrepancy principle and, again, Landweber’s
iteration method. In contrast to these linear regularization schemes, we will
investigate the conjugate gradient method in Section 2.8. This algorithm
can be interpreted as a nonlinear regularization method and is much more
difficult to analyze.

Chapter 2 deals with ill-posed problems in infinite-dimensional spaces.
However, in practical situations, these problems are first discretized. The
discretization of linear ill-posed problems leads to badly conditioned finite
linear systems. This subject will be treated in Chapter 3. In Section 3.1,
we recall basic facts about general projection methods. In Section 3.2, we
will study several Galerkin methods as special cases and apply the results
to Symm’s integral equation in Section 3.3. This equation serves as a pop-
ular model equation in many papers on the numerical treatment of integral
equations of the first kind with weakly singular kernels. We will present a
complete and elementary existence and uniqueness theory of this equation
in Sobolev spaces and apply the results about Galerkin methods to this
equation. In Section 3.4, we study collocation methods. Here, we restrict
ourselves to two examples: the moment collocation and the collocation of
Symm’s integral equation with trigonometric polynomials or piecewise con-
stant functions as basis functions. In Section 3.5, we compare the different
regularization techniques for a concrete numerical example of Symm’s in-
tegral equation. Chapter 3 is completed by an investigation of the Backus-
Gilbert method. Although this method does not quite fit into the general
regularization theory, it is nevertheless widely used in the applied sciences
to solve moment problems.

In Chapter 4, we study an inverse eigenvalue problem for a linear ordinary
differential equation of second order. In Sections 4.2 and 4.3, we develop
a careful analysis of the direct problem, which includes the asymptotic
behavior of the eigenvalues and eigenfunctions. Section 4.4 is devoted to the
question of uniqueness of the inverse problem, i.e., the problem of recovering
the coefficient in the differential equation from the knowledge of one or two
spectra. In Section 4.5, we show that this inverse problem is closely related
to a parameter identification problem for parabolic equations. Section 4.6
describes some numerical reconstruction techniques for the inverse spectral
problem.
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In Chapter 5, we introduce the reader to the field of inverse scattering
theory. Inverse scattering problems occur in several areas of science and
technology, such as medical imaging, nondestructive testing of material,
and geological prospecting. In Section 5.2, we study the direct problem
and prove uniqueness, existence, and continuous dependence on the data.
In Section 5.3, we study the asymptotic form of the scattered field asr — oo
and introduce the far field pattern. The corresponding inverse scattering
problem is to recover the indez of refraction from a knowledge of the far
field pattern. We give a complete proof of uniqueness of this inverse problem
in Section 5.4. Finally, Section 5.5 is devoted to the study of some recent
reconstruction techniques for the inverse scattering problem.

Chapter 5 differs from previous ones in the unavoidable fact that we have
to use some results from scattering theory without giving proofs. We will
only formulate these results, and for the proofs we refer to easily accessible
standard literature.

There exists a tremendous amount of literature on several aspects of in-
verse theory ranging from abstract regularization concepts to very concrete
applications. Instead of trying to give a complete list of all relevant contri-
butions, I mention only the monographs [15, 81, 86, 109, 130, 136, 137, 138,
144, 157, 158, 174, 215, 216], the proceedings, (5, 29, 53, 70, 93, 172, 192,
212}, and survey articles [67, 116, 119, 122, 173] and refer to the references
therein.

This book would not have been possible without the direct or indirect
contributions of numerous colleagues and students. But, first of all, I would
like to thank my father for his ability to stimulate my interest and love of
mathematics during all the years. Also, | am deeply indebted to my friends
and teachers, Professor Dr. Rainer Kress and Professor David Colton, who
introduced me to the field of scattering theory and influenced my mathe-
matical life in an essential way. This book is dedicated to my long friendship
with them!

Particular thanks are given to Dr. Frank Hettlich, Dr. Stefan Ritter, and
Dipl.-Math. Markus Wartha for carefully reading the manuscript. Further-
more, I would like to thank Professor William Rundell and Dr. Martin
Hanke for their manuscripts on inverse Sturm-Liouville problems and con-
jugate gradient methods, respectively, on which parts of Chapters 4 and 2
are based.

Karlsruhe, April 1996 Andreas Kirsch
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1

Introduction and Basic Concepts

1.1 Examples of Inverse Problems

In this section, we present some examples of pairs of problems that are
inverse to each other. We start with some simple examples that are normally
not even recognized as inverse problems. Most of them are taken from the
survey article {119] and the monograph [87].

Example 1.1
Find a polynomial p of degree n with given zeros z,,...,z,. This prob-
lem is inverse to the direct problem: Find the zeros x,....z, of a given

polynomial p. In this example, the inverse problem is easicr to solve, Its
solution is p(z) = ¢(z — z1) ... (z — =) with an arbitrary constant c.

Example 1.2

Find a polynomial p of degree n that assumes given values y,,...,y, € Rat
given points ry,.. .,z € R. This problem is inverse to the direct problem of
calculating the given polynomial at given z,,...,z,. The inverse problem
is the Lagrange interpolation problem.

Example 1.3
Given a real symmetric n x nn matrix A and n real numbers Ay, ..., Ap, find
a diagonal matrix D such that A + D has the eigenvalues A\;,..., A,. This

problem is inverse to the direct problemt of computing the eigenvalues of
the given matrix A + D.
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Example 1.4

This inverse problem is used on intelligence tests: Given the first few terms
ai,az,...,a of a sequence, find the law of formation of the sequence, i.e.,
find a, for all n! Usually, only the next two or three terms are asked for to
show that the law of formation has been found. The corresponding direct
problem is to evaluate the sequence (a,) given the law of formation. It
is clear that such inverse problems always have many solutions (from the
mathematical point of view), and for this reason their use on intelligence
tests has been criticized.

Example 1.5 (Geological prospecting)

In general, this is the problem of determining the location, shape, and/or
some parameters (such as conductivity) of geological anomalies in Earth’s
interior from measurements at its surface. We consider a simple one-dimen-
sional example and describe the following inverse problem.

Determine changes p = p(z), 0 < = < 1, of the mass density of an
anomalous region at depth A from measurements of the vertical component
fu(z) of the change of force at x. p(z') Az’ is the mass of a “volume element”
at 2’ and \/(z — z’)? + h? is its distance from the instrument. The change of
gravity is described by Newton’s law of gravity f = vZ with gravitational
constant 5. For the vertical component, we have

Az’ ho(z) Az’
Af‘,(a:)=7'(:c—p(——,)2——h; cosf =y o) 373"
-z 4+ [z = 27)2 + r?]
X
; >
* 4
h
; nl — T
0 ' 1

This yields the following integral equation for the determination of p:

1
_ p(z’) )
fu(z)—'yh/ [(::—z’)2+h2]3/2 dr’ for0<z <1l (1.1)

We refer to [4, 81, 229] for further reading on this and related inverse
problems in geological prospecting.

Example 1.8 (Inverse scattering problem)
Find the shape of a scattering object, given the intensity (and phase) of
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sound or electromagnetic waves scattered by this object. The corresponding
direct problem is that of calculating the scattered wave for a given object.

u’/r
u
—_— .
T
More precisely, the direct problem can be described as follows. Let a bounded
region D € RY (N = 2 or 3) be given with smooth boundary 8D (the
scattering object) and a plane incident wave u*(z) = e**9% where k > 0
denotes the wave number and 8 is a unit vector that describes the direction

of the incident wave. The direct problem is to find the total field u = u' +u®
as the sum of the incident field u* and the scattered field u® such that

Au+k*u=0 nRY\D, wu=0 ondD, (1.2a)

3

u’ iku® = O(r~V*/2) for r = [z| — oo uniformly in z (1.2b)

or |z
For acoustic scattering problems, v(z,t) = u(z)e~** describes the pressure
and k = w/c is the wave number with speed of sound c. For suitably
polarized time harmonic electromagnetic scattering problems, Maxwell’s
equations reduce to the two-dimensional Helmholtz equation Au+ k*u =0
for the components of the electric (or magnetic) field v. The wave number
k is given in terms of the dielectric constant ¢ and permeability u by &k =
VERW.

In both cases, the radiation condition (1.2b) yields the following asymp-
totic behavior:

exp(ik|z . -
u'(z) = T:T‘E(V-ITQ““(” + O(l=)~ ™D as [z] — oo,

where & = z/ |z|. The inverse problem is to determine the shape of D when
the far field pattern u.,(Z) is measured for all £ on the unit sphere in RV,

These and related inverse scattering problems have various applications
in computer tomography, seismic and electromagnetic exploration in geo-
physics, and nondestructive testing of materials, for example. An inverse
scattering problem of this type will be treated in detail in Chapter 5.

Standard literature on these direct and inverse scattering problems are
the monographs (37, 38, 139] and the survey articles [34, 203).
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Example 1.7 (Computer tomography)

The most spectacular application of the Radon transform is in medical
imaging. For example, consider a fixed plane through a human body. Let
p(z,y) denote the change of density at the point (z,y), and let L be any
line in the plane. Suppose that we direct a thin beam of X-rays into the
body along L and measure how much the intensity is attenuated by going

through the body. L

S

N

N>z

Let L be parametrized by (s,6), where s € R and § € [0, 7). The ray Lss
has the coordinates

se’ +iue®* € C, ueR,
where we have identified C with R2. The attenuation of the intensity I is

approximately described by dI = —ypl du with some constant ~. Integra-
tion along the ray yields

Inf(u) = —‘y/p(se“s + iue®®) du

ug

or, assuming that p is of compact support, the relative intensity loss is
given by

oc
Inf(oc) = —« / o (se"'S + iuew) du.
—oo
In principle, from the attenuation factors we can compute all line integrals
o<
(Rp)(s,6) = / p(se®® +iue’)du, seR, §€0,n). (1.3)
-0
Rp is called the Radon transform of p. The direct problem is to compute the

Radon transform Rp when p is given. The inverse problem is to determine

the density p for a given Radon transform Rp (i.e., measurements of all
line integrals). ’
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The problem simplifies in the following special case, where we assume
that p is radially symmetric and we choose only vertical rays. Then p =
p(r), r = \/z2 + y2, and the ray L, passing through (z,0) can be parame-
trized by (z,u), u € R. This leads to (the factor 2 is due to symmetry)

V(z) = Inl(c0) = —2771)(\/1:2-*-112) du.
0

Again, we assume that p is of compact support in {z : |z] < R}. The change
of variables u = V7% — z2 leads to

o0 R
Ve = 21 [ ol o = <01 [ s s (1)

A further change of variables 2 = R? — r2 and y = R? — z2? transforms
this equation into the following Abel’s integral equation for the function

z— p(VRI = 2):

V(VR*-y) = —7/”(\/_'222_:2) dz, 0<y<R (1.5)
(4]

The standard mathematical literature on the Radon transform and its ap-
plications are the monographs (102, 104, 166]. We refer also to the survey
articles [105, 145, 147, 152].

The following example is due to Abel himself.

Exampie 1.8 (Abel’s integral equation)
Let a mass element move along a curve I from a point p; on level A > 0

to a point pp on level k = 0. The only force acting on this mass element is
the gravitational force mg.

Ay
h N
P Iz =1y(y)
>
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The direct problem is to determine the time T in which the element moves
from p; to py when the curve T is given. In the inverse problem, one mea-
sures the time T = T'(h) for several values of h and tries to determine
the curve I'. Let the curve be parametrized by = = ¥(y). Let p have the
coordinates (¥(y),y)-

By conservation of energy, i.e.,

E+U = gv2+mgy = const = mgh,

we conclude for the velocity that

ds
7l v = 2g(h — y).

The total time T from p; to pg is

h

r1
- _ [ds _ 1+ 9/ (y)?
T_T(h)—p/v —0 Qg(h—y)dy for h > 0.
0

Set p(y) = 1+ ¢¥'(y)? and let f(h) := T(h)y/Zg be known (measured).
Then we have to determine the unknown function ¢ from Abel’s integral
equation

Iy
e(y) _
!mdy = f(h) for h > 0. (1.6)

A similar - but more important, - problem occurs in seismology. One stud-
ies the problem to determine the velocity distribution c¢ of Earth from
measurements of the travel times of seismic waves (see [22]).

For further examples of inverse problems leading to Abel's integral equa-
tions, we refer to the lecture notes by R. Gorenflo and S. Vessella [84], the
monograph {158], and the papers {141, 222].

Example 1.9 (Backwards heat equation)
Consider the one-dimensional heat equation

du(z,t)  0%lz,t)
ot ~  Oz?

(1.7a)
with boundary conditionsi '

ﬁ(O, t) = u(mt) =0, t20, (1.7b)
and initial condition

. u(z,0) = up(z), 0<Lz<m . (1.7¢)
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Separation of variables leads to the solution
2 T
= h a,=-— i dy. (1.
u(z,t) = Za,, tsin(nz) with a 7r/uo(y) sin(ny)dy. (1.8)
0

The direct problem is to solve the classical initial boundary value problem:
Given the initial temperature distribution up and the final time T, deter-
mine u(-,T). In the inverse problem, one measures the final temperature
distribution u(-, T") and tries to determine the temperature at earlier times
t < T, e.g., the initial temperature u(-,0).

From solution formula (1.8), we see that we have to determine ug :=
u(-,0) from the following integral equation:

T

u(zT) = 2 / ke y)uoly)dy, 0<z<, (19)

0

where

k(z,y) : Ze n? T sin(nz)sin(ny). (1.10)

We refer to the monographs (15, 138, 158] and papers (24, 31, 33, 59, 60,
72, 153, 202] for further reading on this subject.

Example 1.10 (Diffusion in inhomogeneous medium)
The equation of diffusion in an inhomogeneous medium (now in two di-
mensions) is described by the equation

ou(z,t)
ot

= ~d1v(ngradu(:t t)), ze€D, t>0, (1.11)

where ¢ is a constant and x = x(z) is a parameter describing the medium.
In the stationary case, this reduces to

div(kgradu) = 0 in D. (1.12)

The direct problem is to solve the boundary value problem for this equa-
tion for given boundary values u|ap and given function x. In the inverse
problem, one measures u and the ﬁux % on the boundary 8D and tries to
determine the unknown function « in D.

This is an example of a parameter identification problem for a partial
differential equation. Among the extensive literature on parameter identi-
fication problems, we only mention the classical papers (128, 183, 182], the
monographs {13, 15, 158}, and the survey article [160].
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Example 1.11 (Sturm-Liouville eigenvaiue problem)
Let a string of length L and mass density p = p(z) > 0,0 < x < L, be
fixed at the endpoints z = 0 and z = L. Plucking the string produces tones
due to vibrations. Let v(z,t), 0 <z < L, t > 0, be the displacement at z
and time t. It satisfies the wave equation

8%v(z,t) _ 0%v(z,t)

= 1
p(x) 3 32 O<.fr<L,t>0, (1.13)

subject to boundary conditions v(0,t) = v(L,t) =0 for t > 0.

A periodic displacement of the form
v(z,t) = w(z) [acoswt + bsinwt]

with frequency w > 0 is called a pure tone. This form of v solves the
boundary value problem (1.13) if and only if w and w satisfy the Sturm-
Liouville eigenvalue problem

w'(z) + WPo(z)w(zr) = 0.0<z<L, w0 =wl)=0  (1.14)

The direct problem is to compute the eigenfrequencies w and the corre-
sponding eigenfunctions for known function p. In the inverse problem, one
tries to determine the mass density p from a number of measured frequen-
cies w.

We will see in Chapter 4 that parameter estimation problems for parabolic
and hyperbolic initial boundary value problems are closely related to in-
verse spectral problems.

Example 1.12 (Inverse Stefan problem)

The physicist Stefan (see [207]) modeled the melting of arctic ice in the
summer by a simple one-dimensional model. In particular, consider a ho-
mogeneous block of ice filling the region x > £ at time ¢ = 0. The ice starts
to melt by heating the block at the left end. Thus, at time ¢ > 0 the region
between z = 0 and z = s(t) for some s(t) > 0 is filled with water and the
region r > s(t) is filled with ice.

ht

T
T = s(t)

water ice




