Ricki Lewis

Animal Life

Life

Beginnings of Life
Animal Life
Plant Life
Evolution of Life
Behavior and Ecology of Life

Ricki Lewis

State University of New York at Albany

Contributing Authors

Animal Biology, Behavior and E ology

Judith Goodenough

University of Massachusetts at Amherst

Plant Biology

Randall C. Moore Wright State University

Book Team

Editor Kevin Kane Developmental Editor Margaret J. Manders Production Editor Sherry Padden Visuals/Design Consultant Marilyn Phelps Designer Mark Elliot Christianson Art Editor Janice M. Roerig Photo Editor Carol Smith Permissions Editor Vicki Krug Visuals Processor Joseph P. O'Connell

WCB Wm. C. Brown Publishers

President G. Franklin Lewis Vice President, Publisher George Wm. Bergquist Vice President, Operations and Production Beverly Kolz National Sales Manager Virginia S. Moffat Group Sales Manager Vince DiBlasi Vice President, Editor in Chief Edward G. Jaffe Marketing Manager Craig S. Marty Managing Editor, Production Colleen A. Yonda Manager of Visuals and Design Faye M. Schilling Production Editoral Manager Julie A. Kennedy Production Editoral Manager Ann Fuerste Publishing Services Manager Karen J. Slaght

WCB Group

President and Chief Executive Officer Mark C. Falb Chairman of the Board Wm. C. Brown

Life

Front cover photo by @ Robert Hernandez/Allstock

Part 1: Beginnings of Life

Front cover illustration by Mark Elliot Christianson based on photographs by © Lloyd M. Beidler/Science Photo Library/Photo researcher, Inc.

Part 2: Animal Life

Front cover photo by © Erwin & Peggy Bauer

Part 3: Plant Life

Front cover photo by @ Michael Fogden/Oxford Scientific Films

Part 4: Evolution of Life

Front cover photo by © Henry Ausloos/Animals Animals

Part 5: Behavior and Ecology of Life

Front cover photo by © Larry Lefever/Grant Heilman Photography

Photo Research by Toni Michaels

The credits section for this book begins on page C-1, and is considered an extension of the copyright page.

Copyright © 1992 by Wm. C. Brown Publishers. All rights reserved.

Library of Congress Catalog Card Number: Life: 91-70426

ISBN Life Casebound, recycled interior stock: 0-697-05392-X

ISBN Life Paper binding, recycled interior stock: 0-697-14187-X

ISBN Part 1: Beginnings of Life Paper binding, recycled interior stock: 0-697-14193-4

ISBN Part 2: Animal Life Paper binding, recycled interior stock: 0-697-14195-0

ISBN Part 3: Plant Life Paper binding, recycled interior stock: 0-697-14197-7

ISBN Part 4: Evolution of Life Paper binding, recycled interior stock: 0-697-14199-3

ISBN Part 5: Behavior and Ecology of Life Paper binding, recycled interior stock: 0-697-14201-9

ISBN Life Boxed set, recycled interior stock: 0-697-14189-6

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America by Wm. C. Brown Publishers, 2460 Kerper Boulevard, Dubuque, IA 52001

7 6 5 4 3 2 1

Publisher's Note to the Instructor

Recycled Paper

Life—in all its numerous binding options (listed here)—is printed on recycled paper stock. All of its ancillaries, as well as all advertising pieces for Life, will also be printed on recycled paper, subject to market availability.

Our goal in offering the text and its ancillary package on *recycled paper* is to take an important first step toward minimizing the environmental impact of our products. If you have any questions about recycled paper use, *Life*, its package, any of its binding options, or any of our other biology texts, feel free to call us at 1-800-331-2111. Thank you.

Kevin Kane Senior Editor Biology

Binding Option	Description	ISBN
Life, casebound	The full-length text (chapters 1-40), with hardcover binding.	0-697-05392-X
Life, paperbound	The full-length text, paperback covered and available at a significantly reduced price, when compared with the casebound version.	0-697-14187-X
Part 1 Beginnings of Life, paperbound	Part 1 features the first 4 units or 15 chapters of the text, covering the scientific method, the unity and diversity of life, basic chemistry, cell biology, reproduction and development, and genetics. This paperback option is available at a significantly reduced price when compared with both the full-length casebound and paperbound versions.	0-697-14193-4
Part 2 Animal Life	Part 2 features chapters 16-27 on the anatomy and physiology of animals—invertebrate, vertebrate, and human. This paperback is also available at a significantly reduced price when compared with the full-length versions of the text.	0-697-14195-0
Part 3 Plant Life	Part 3 features chapters 28-32 on plant form and function, with popular applications chapters on "Plants Through History" (28) and Plant Biotechnology (32). Paperback bound, it is available for a fraction of the full-length casebound or paperbound prices.	0-697-14197-7
Part 4 Evolution of Life	Part 4 features chapters 33-35 on evolution. Paperback bound, it is also available for a fraction of the full-length casebound or paperbound prices.	0-697-14199-3
Part 5 Behavior and Ecology of Life	Part 5 features chapters 36-40 on behavior and ecology. Paperback bound, it also sells for a fraction of the full-length book price.	0-697-14201-9
Life, the Boxed Set	The entire text, offered in an attractive, boxed set of all five paperback "splits." It is available at the same price as the full-length casebound text.	0-697-14189-6

The Life Learning System

Chapter Outlines

Each chapter begins with an outline. These will allow students to tell at a glance how the chapter is organized and what major topics have been included in the chapter. The outlines include the first and second level heads for the chapter.

Learning Objectives

Each chapter begins with a list of concepts stressed in the chapter. This listing introduces the student to the chapter by organizing its content into a few meaningful sentences. The concepts provide a framework for the content of each chapter.

Key Concepts

At the ends of major sections within each chapter, summaries briefly highlight key concepts in the section, helping students focus their study efforts on the basics.

Dramatic Visuals Program

Colorful, informative photographs and illustrations enhance the learning program of the text as well as spark interest and discussion of important topics.

Viruses—Simpler Than Cells

Than Cells

The simplest form of life is a unicellular organism with no organelles, such as a bacterium. However, in chapter 3 we absterium. However, in chapter 3 we countred several types of "infectious agents" that appear to be living while they are infecting cells but otherwise seem to be nonliving chemicals. Before describing how we examine cells and their contents, it is interesting to take a comparative look at the viruses, both to point out their noncellular organization and because they exert very non-ticeable effects on human health, causing such minor ills accides and influenzand such deadly ones as AIDS. Reading 4:1 describes effects of the herpes simplex virus.

A trins consists of a nucleic acid (DNA or RNA) surrounded by protein. Figure 4:2 illustrates the human immunodificiency wins (HIV), which causes AIDS. A virus most be within a cell to reproduce, and in the content of the produce and in the content of t

the physical environment by their protein coverings, A vitrus reproduce by injecting its DNA or RNA into the host cell, where it situates itself within the host'S DNA. In fact, viral DNA sequences can probably be found within you own chromosomes. (An RNA virus, such as HIV, is called a retrotivities and must first make a replica of its RNA in DNA form.)

Reading 5.2 Liposomes-New Drug Delive

Boldfaced Words

New terms appear in boldface print as they are introduced within the text and are immediately defined in context. If any of these terms are reintroduced in later chapters, they are italicized. Key terms are defined in the text glossary with appropriate page reference.

SUMMARY

QUESTIONS

Readings

Throughout Life, selected readings both elaborate and entertain. Some describe experiments, some provide health information, and others are closer looks at specific topics. All readings are written by the author.

Tables

Numerous strategically-placed tables list and summarize important information, making it readily accessible for efficient study.

To Think About

Located at the end of each chapter, these questions are springboards for class discussions and term paper topics.

Chapter **Summaries**

At the end of each chapter is a summary. This should help students more easily indentify important concepts and better facilitate their learning of chapter concepts

Questions

The end-of-chapter questions often continue the storytelling style of the chapter, using anecdotes and experiments from the chapter to illustrate and apply concepts.

Characteristic	Prokaryotic Cells	Eukaryotic Cells
Organisms	Bacteria (including cyanobacteria)	Protists, fungs, plants, anima
Cell size	1-10 µm across	10-100 jam across
Oxygen required	By some	By all
Membrane-bound organelles	No	Yes
Ribosomes	Yes	Yes
DNA form	Circular	Coiled linear strands, complexed with protein
DNA location	In cytoplasm	In nucleus
DNA length	Short	Long
Protein synthesis	RNA and protein synthesis are not spatially separated	RNA and protein synthesis are spatially separated
Membranes	Some	Many
Cytoskeleton	No	Yes
Cellular organization	Single celfs or colonies	Some single-celled, most multicellular with differentiation of cell function

TO THINK ABOUT

SUGGESTED READINGS

Suggested Readings

A list of readings at the end of each chapter suggests references that can be used for further study of topics covered in the chapter. The items listed in this section were carefully chosen for readability and accessibility.

Preface

Life was written with the nonbiology major in mind, but contains enough information to be suitable for a majors' course too.

Diversity in Action

While human examples and applications are emphasized, *Life*'s diversity is treated early in a separate chapter, later in an appendix on taxonomy, and is logically integrated into all chapters. The animal biology chapters, for example, explore a deep-sea shrimp's vision, an insect's exoskeleton, a cow's digestion, and much more. The behavior and ecology chapters are filled with glimpses into the lives of a variety of organisms, from aardwolves to fire ants to naked mole rats. The reader of *Life* will learn many new things, but also encounter familiar territory. The science of biology will not seem foreign—it will be fun and make sense.

Discovery and Evolution

Two conceptual threads weave their way through *Life*. The book opens with the first theme, discovery. The story of how the sweetener aspartame was discovered takes the student through the scientific method and experimental design, yet points out how the initial detection of the food additive was very much a surprise.

In chapter 2, "The Diversity of Life," taxonomy is alive and vibrant in the treetops of a Peruvian wildlife preserve, where biologists catalog the abundance of insect life; and in such an unlikely place as an urban fish market. A pair of children playing with spectacles led to the development of the compound microscope, as described in chapter 4. In chapter 6, "Biological Energy," the student can be the discoverer by using the reactions of photosynthesis to develop a photograph on a leaf. The inborn errors of

metabolism, PKU (chapter 15, "Genetic Disease: Diagnosis and Treatment") was discovered thanks to a mother's alertness ofher infant's odd-smelling diapers. And a simple treatment for newborn jaundice (chapter 24, "The Digestive System") was discovered by an observant English nurse changing "nappies" in the sunlight. Chapter 15 also tells the story of how a seemingly drunken sailor and his 5,000 living descendants helped provide the first genetic marker.

Not all discovery is accidental. The look at "Molecular Genetics" in chapter 13 is liberally sprinkled with descriptions of the most elegant experiments ever performed. The scientific method is reviewed in chapter 36, "The Behavior of Individuals," as students at the University of Miami track singing birds, and in chapter 38 "Populations," through ecologists conducting wildlife surveys. The creation of an artificial mini-biosphere, described in chapter 39 "Ecosystems," is an exciting view of scientific investigation—whether it works or not.

The second conceptual thread, evolution, accustoms the reader to continually wonder, "How did all of this happen?" How did a duo of protein and nucleic acid join forces long ago to form the first cell? How could random mutations in those early cells build the metabolic pathways of today? How did eukaryotic cells come by their highly successful "bags within a bag" organization? How do species arise, change, become extinct? How have our ideas about evolution themselves evolved?

Humor, History, and Human Values

An occasional foray into humor can help students learn. Consider the example of epistasis in chapter 11, borrowed from the soap opera "Gen-

eral Hospital," or the opening to chapter 34 "The Forces of Evolutionary Change," a love story between a moose and a dairy cow.

Historical references add interest and chronicle the evolution of ideas. The confusing multiple phenotypes of the blood disorder porphyria, for example, may have led the "mad king"George III to provoke the American Revolution. The study of genetics begins with early agricultural efforts nearly 10,000 years ago. How different were Edward Jenner's problems with how best to test his smallpox vaccine (chapter 28, "Plants Through History") from today's scientists' attempts to test AIDS vaccines? The state of the American temperate forest today reflects pioneer activity over the past centuries. Recent history brings the ecology chapters alive, from Mt. St. Helens to the Yellowstone fires to the nuclear explosion at Chernobyl.

Examining human values teaches the student to develop informed opinions and judgments about biologically relevant issues—a skill that will last long after the steps of glycolysis or the parts of the cell are forgotten. Should a pregnant woman who smokes or drinks alcohol be responsible for the health effects on her fetus? Should an employer be told the results of an employee's genetic marker test for Alzheimer's disease? Should we take extraordinary measures to save extremely premature babies if they will be handicapped after (or by) the treatment? Should we even attempt to clean animals drenched in oil from tanker spills? Should we limit reproduction? These disturbing queries are most often found in the "To Think About" sections at the chapters' ends, both so that they will not distract from learning major facts and concepts and so that the student is left thinking.

Integrating Technology

Technology has given new, exciting meaning to some difficult subjects. Discussing the development of extraembryonic structures segues into a peek at chorionic villus sampling. Liposomes are but an extension of cell membrane structure and function. Teaching DNA replication is no longer a hurdle, now that we have the polymerase chain reaction to demonstrate elegantly the power of the process. Filling in the details of food webs no longer requires being on the scene of a meal, thanks to stable isotope tracing (chapter 39, "Ecosystems").

The chapters on plant anatomy and physiology are bracketed by two unique applications chapters—chapter 28, "Plants Through History," chronicles our harvesting of the major crop plants, and chapter 32, "Plant Biotechnology," looks at how molecular and cellular techniques are likely to continue that harvest, via the genetic alteration of plant life.

Finally, Appendix A, "Microscopy", provides a closer look at the technology that really breathed life into biology, from the first crude lenses to today's powerful confocal microscopes. Yet the very technology that has taught us so much and made our lives so comfortable can get out of control, upsetting the delicate balance of life. Chapter 40 "Environmental Concerns," describes these problems, but emphasizes natural resiliency, leaving the reader, ultimately, with a sense of hope and purpose:

"This book has shown you the wonder that is life, from its constituent chemicals, to its cells, tissues, and organs, and all the way up to the biosphere. Do nothing to harm life—and do whatever you can to preserve its precious diversity. For in diversity lies resiliency, and the future of life on earth."

Pedagogy

A great deal of creative energy has gone into the pedagogical aids, and some are quite different from those in the run-of-the-mill textbook. (For a visual walkthrough of these aids, examine the Life Learning System preview in this book's frontmatter.) The end-of-chapter "Questions" often continue the storytelling style of the chapter, using anecdotes and experiments from the literature to illustrate and apply concepts. The "To Think About" questions are springboards for class discussions and term paper topics. "Suggested Readings" go far beyond Scientific American and other textbooks, including sources such as Science News, FDA Consumer and the New York Times-sources that students are more likely to read, understand, and appreciate.

"Learning Objectives," which open the chapters, "Key Concepts" following major sections, and end-of-chapter summaries reinforce main points.

"Readings" throughout the chapters both elaborate and entertain. Some describe experiments: "Enticing Cells to Divide in the Laboratory," "Recipes for Starting Life-Simulating Early Earth Conditions," "Tracking Development in Different Organisms;" some provide health information, "Cardiovascular Spare Parts," "Jon and Linda—The Plight of an Infertile Couple," "Our Overdrugged Elderly," "Steroids and Athletes—An Unhealthy Combination," "The War on Cancer;" others are closer looks, "A Closer Look at an Organelle-The Lysosome," "Tumor Necrosis Factor," "Odd Human Traits," or "The Herpes Simplex Virus." Some are practical, "Nutrition and the Athlete," "Food Inhalation and the Heimlich Maneuver" and many highlight diversity "Falling Felines," "Rumbles, Roars, Screeches, and Squeals—Animal Communication," or "Sexual Seasons."

Ancillaries

Instructor's Manual/Test Item File

Prepared by Heather McKean and James Hanegan of Eastern Washington University, the instructor's manual offers helpful suggestions for course outlines and developing daily lectures. Each chapter provides key concepts, key terms, chapter outlines, learning objectives, answers to the text's end-of-chapter questions, and suggested audiovisual materials. There are also 25 to 50 objective questions in a *Test Item File* in the back of the manual. (ISBN 0-697-10181-9)

Laboratory Manual

Written by Alice Jacklet, a colleague of mine at SUNY-Albany, the *Laboratory Manual* strongly emphasizes and guides students through *the process of scientific inquiry*. Beautifully illustrated in full-color, it features 20 self-contained exercises that can easily be reorganized to suit individual course needs. (ISBN 0-697-05637-6)

Laboratory Resource Guide

This helpful prep guide offers instructions for assembling lab materials and preparing reagents, as well as suggestions for using the Lab Manual in different kinds of lab settings. (ISBN 0-697-10178-9)

Customized Laboratory Manual

Inexpensive, one-color separates of each lab in the Laboratory Manual are available for individual use, for combination with labs of local origination, or for combination with labs from other Wm. C. Brown manuals. All materials will be custom, spiral-bound for your convenience. Contact your local Wm. C. Brown sales representative for more details.

Readings in Biology

A compilation of original journal and magazine articles by Ricki Lewis is also available to students at a nominal price. The readings, which correlate closely with the sequence of topics in the text, present additional high-interest information on cell biology, genetics, reproduction, and animal biology. (ISBN-0-697-12059-7)

Student Study Guide

Also written by Heather McKean and James Hanegan, the study guide offers students a variety of exercises and keys for testing their comprehension of basic as well as difficult concepts. (ISBN 0-697-05636-8)

TestPak

This computerized classroom management system/service includes a data base of objective test questions, copyable student self-quizzes, and a grade-recording program. Disks are available for IBM, Apple, and MacIntosh PC computers and require no programming experience. If a computer is not available, instructors can choose questions from the *Test Item File* and phone or FAX in their request for a printed exam, which will be returned within 48 hours.

Transparencies and Slides

More than 200 overhead *transparencies* or a comparable *slide set* is available for free to all adopters, on request. The acetates and slides feature key illustrations from the text that, in most cases, have images and labels that have been significantly enlarged for more effective classroom display. (Transparencies: 0-697-10179-7; Slides: ISBN 0-697-10167-3)

Customized Transparency Service

For those adopters interested in receiving acetates of text figures not included in the standard transparency package, a select number of acetates will be custom-made upon request. Contact your local Wm. C. Brown sales representative for more details.

Extended Lecture Outline Software

This instructor software features extensive outlines of each text chapter with a brief synopsis of each subtopic to assist in lecture preparation. Written in ASCII files for maximum utility, it is available in IBM, Apple, or Mac formats. It is free to all adopters, upon request.

You Can Make a Difference

by Judith Getis

This short, inexpensive supplement offers students practical guidelines for recycling, conserving energy, disposing of hazardous wastes, and other pollution controls. It can be shrink wrapped with the text, at minimal additional cost. (ISBN 0-697-13923-9)

How to Study Science

by Fred Drewes, Suffolk County Community College

This excellent new workbook offers students helpful suggestions for meeting the considerable challenges of a science course. It offers tips on how to take notes; how to get the most out of laboratories; as well as on how to overcome science anxiety. The book's unique design helps to stir critical thinking skills, while facilitating careful note-taking on the part of the student. (ISBN 0-697-14474-7)

The Life Science Lexicon

by William N. Marchuk, Red Deer College

This portable, inexpensive reference helps introductory-level students quickly master the vocabulary of the life sciences. Not a dictionary, it carefully explains the rules of word construction and derivation, while giving complete definitions of all important terms. (ISBN 0-697-12133-X)

Biology Study Cards

by Kent Van De Graaff, R. Ward Rhees, and Christopher H. Creek, Brigham Young University

This boxed set of 300, two-sided study cards provides a quick, yet thorough visual synopsis of all key biological terms and concepts in the general biology curriculum. Each card features a masterful illustration, pronunciation guide, definition and description in context. (ISBN 0-697-03069-5)

Special Software and Multi-Media Ancillaries

Life on Earth Videotapes

This critically acclaimed, twin-cassette package by David Attenborough, features thirteen programs, each about 25 minutes in duration, on Life's Diversity. Each cassette also features "Chapter Search," an on-screen numerical code for quick-scan access to each of the cassettes' thirteen programs and subtopics. The *Life on Earth* videotapes are available for free to all adopters of the text, upon request. (ISBN 0-697-14631-6)

Program Summary

- THE INFINITE VARIETY
 Nature's secrets found in ancient places.
- BUILDING BODIES
 First signs of life in the seas.
- THE FIRST FORESTS
 The world of plants, primitive and grand.
- THE SWARMING HORDES
 The ingenious adaptability of insects.
- CONQUEST OF THE WATERS Complexities of the great groups of fish.
- INVASION OF THE LAND
 The emergence of amphibian creatures.
- 7. VICTORS OF THE DRY LAND Reptiles and the dinosaur dynasty.
- 8. LORDS OF THE AIR Feathers, wings and birds in flight.
- THE RISE OF THE MAMMALS Where dinosaurs failed, mammals succeeded.
- 10. THEME AND VARIATIONS

 The extremes of mammal evolution.
- 11. THE HUNTS AND THE HUNTED Patterns of behavior in the animal kingdom.
- LIFE IN THE TREES
 Spotlighting monkeys and their relatives.
- THE COMPULSIVE COMMUNICATORS
 The development and achievements of humans.

Bio Sci II Videodisk

This critically acclaimed laser disk, produced by Videodiscovery for Wm. C. Brown, features more than 12,000 still and moving images, with a complete, bar-coded directory. Contact your Wm. C. Brown sales representative for more details. (ISBN 0-697-12121-6)

Mac-Hypercard and IBM Linkway Biostacks

These easy-to-use MacIntosh and IBM disks allow instructors to access the Bio Sci II laserdisk through a series of programmed lecture sequences. Contact your Wm. C. Brown representative for more details. (Mac Hypercard: 0-697-13273-1; IBM Linkway Biostacks, 3.5: 0-697-13275-7; IBM Linkway Biostacks, 5.2: 0-697-13274-9)

The Gundy-Weber Knowledge Map of the Human Body

by G. Craig Gundy, Weber State University

This thirteen disk, Mac-Hypercard program is for use by instructors and students alike. It features masterfully prepared computer graphics, animations, labeling exercises, self-tests and practice questions to help students examine the systems of the human body. Contact your local Wm. C. Brown representative or call 1-800-351-7671.

The Knowledge Map Diagrams

- Introduction, Tissues, Integument System (0-697-13255-2)
- 2. Viruses, Bacteria, Eukaryotic Cells (0-697-13257-9)
- 3. Skeletal System (0-697-13258-7)
- 4. Muscle System (0-697-13259-5)
- 5. Nervous System (0-697-13260-9)
- 6. Special Senses (0-697-13261-7)
- 7. Endocrine System (0-697-13262-5)
- 8. Blood and the Lymphatic System (0-697-13263-3)
- 9. Cardiovascular System (0-697-13264-1)
- 10. Respiratory System (0-697-13265-X)
- 11. Digestive System (0-697-13266-8)
- 12. Urinary System (0-697-13267-6)
- 13. Reproductive System (0-697-13268-4)

Demo - (0-697-13256-0)

Complete Package - (0-697-13269-2)

GenPak: A Computer Assisted Guide to Genetics

by Tully Turney, Hampden-Sydney College

This Mac-Hypercard program features numerous, interactive/tutorial (problem-solving) exercises in Mendelian, molecular, and population genetics at the introductory level. (ISBN 0-697-13760-0)

Acknowledgments

Most of the credit for this book goes to the stories of life themselves. But thanks must also go to the scores of magazine editors who have shown me how to explain concepts clearly and concisely, yet retain a distinctive style; to the manuscript reviewers who corrected my errors and contributed so many valuable insights; to Gail Marsella, Randy Moore, Tom Gregg, Tom Wissing, and Judy Goodenough for assistance with selected chapters; to a fantastic bookteam; to my editor, Kevin Kane, and my developmental editor, Marge Manders, at Wm. C. Brown, who managed to keep me going at those times when the automatic pilot faltered; to my parents, who encouraged a little girl who brought home all sorts of creatures and to my parents-inlaw who never lost faith; to my three daughters, whom I gestated along with this book; and most of all to my husband, Larry, who faithfully photocopied zillions of pages, listened to countless reviews, and never tired of hearing, yet one more time, "I've only got one more sentence left!" This really is the last sentence.

Brief Contents

Part 1 Beginnings of Life

U N I T

Overview of Biology 1

Chapter 1 Thinking Scientifically 2
Chapter 2 The Diversity of Life 13
Chapter 3 The Chemistry and Origin of Life 38

<u>U N I T</u>

Cell Biology 65

Chapter 4 Cells and Tissues 66
Chapter 5 Cellular Architecture 91
Chapter 6 Biological Energy 108
Chapter 7 Mitosis 130

<u>U N I T</u>

Reproduction and Development 153

Chapter 8 Human Meiosis and Reproduction 154

Chapter 9 A Human Life—Development Through Aging 167

Chapter 10 Human Reproductive and

Chapter 10 Human Reproductive and
Developmental Problems 193

U N I T

Genetics 215

Chapter 11 Mendel's Laws 216 Chapter 12 Linkage 236

Chapter 13 Molecular Genetics 250 Chapter 14 Human Genetics 277

Chapter 15 Genetic Disease—Diagnosis

and Treatment 296

Part 2 Animal Life

<u>U N I T</u>

Animal Biology 313

Chapter 16 Neurons 314

Chapter 17 The Nervous System 330 Chapter 18 The Senses 348

Chapter 19 The Endocrine System 367

Chapter 20 The Skeletal System 389

Chapter 21 The Muscular System 404
Chapter 22 The Circulatory System 420

Chapter 23 The Circulatory System 420

Chapter 23 The Respiratory System 444

Chapter 24 The Digestive System 463

Chapter 25 Nutrition 481

Chapter 26 Homeostasis 497 Chapter 27 The Immune System 514

Part 3 Plant Life

Plant Biology 537

Chapter 28 Plants Through History 538
Chapter 29 Plant Form and Function 551
Chapter 30 Plant Life Cycles 570
Chapter 31 Plant Responses to Stimuli 587

Chapter 32 Plant Biotechnology 602

Part 4 Evolution of Life

Evolution 617

Chapter 33 Darwin's View of Evolution 618
Chapter 34 The Forces of Evolutionary
Change 630
Chapter 35 Evidence for Evolution 647

Part 5 Behavior and Ecology of Life

Behavior and Ecology 665

Chapter 36 The Behavior of Individuals 666

Chapter 37 Social Behavior 683

Chapter 38 Populations 699
Chapter 39 Ecosystems 712

Chapter 40 Environmental Concerns 742

Contents

The *Life* Learning System xii Preface xiv

U N I T

Overview of Biology 1

Chapter 1

Thinking Scientifically 2

Chapter Outline 2
Learning Objectives 2
Biology and You 3
A Biologist's View of the Living World 3
The Scientific Method 3
Science Is a Cycle of Inquiry 5
Designing Experiments 7
Limitations of Applying the Scientific Method 8
We All Think Like Scientists at Times 10
Summary 11
Questions 11
To Think About 12
Suggested Readings 12

Chapter 2

The Diversity of Life 13

Chapter Outline 13
Learning Objectives 13
Journey in the Present 14
A Living World of Contrasts 14
Life Within Life 14
Life Affects Life 15
Journey Through the Past 17
The Science of Biological Classification—
Taxonomy 18
Characteristics to Consider 19

Problems in Taxonomy 20
The Linnaean System of Biological
Classification 21
A Look at the Kingdoms 22
Monera 22
Protista 24
Fungi 26
Plantae 28
Animalia 30
Summary 36
Questions 36
To Think About 37
Suggested Readings 37

Chapter 3

The Chemistry and Origin of Life 38

Chapter Outline 38 Learning Objectives 38 The Characteristics of Life 39 Organization 39 Metabolism 40 Irritability and Adaptation 40 Reproduction 42 What Is the Simplest Form of Life? 42 Chemistry Basics 43 The Atom 44 Atoms Meeting Atoms 45 Life's Chemical Components 48 Characteristics of Water 49 Water in the Human Body 49 Organic Compounds of Life 49 Inorganic Compounds in Life—Minerals 58 The Origin of Life on Earth 58 Spontaneous Generation 59 Life from Space 59 Common Ancestry 59 Chemical Evolution 60 Summary 62 **Questions** 62 To Think About 63 Suggested Readings 63

<u>U N I T</u>

Cell Biology 65

Chapter 4

Cells and Tissues 66

Chapter Outline 66 Learning Objectives 66 Cells—Biological Efficiency and Organization 67 Viruses—Simpler Than Cells 68 Viewing Cells—The Development of the Microscope 69 The Cell Theory 71 Characteristics of Cells 72 The Prokaryotic Cell 72 The Eukaryotic Cell 74 Specialized Cells Form Tissues 81 Epithelium—The "Covering" Tissue 81 Connective Tissue 83 Nervous Tissue 86 Muscle Tissue 86 The Origin of Eukaryotic Cells 87 Summary 89 Questions 89 To Think About 90 Suggested Readings 90

Chapter 5

Cellular Architecture 91

Chapter Outline 91
Learning Objectives 91
The Cell Surface—Cellular Name
Tags 92
The Cell Membrane—Cellular Gates 94
The Protein-Lipid Bilayer 94
Movement Across Membranes 98
The Cytoskeleton—Cellular
Support 103
Microtubules 104

Microfilaments 104
Coordination of Cellular Architecture—
The Meeting of Sperm and Egg 104
Summary 106
Questions 107
To Think About 107
Suggested Readings 107

Chapter 6

Biological Energy 108

Chapter Outline 108 Learning Objectives 108 Energy in Living Systems 109 ATP—Biological Energy Currency 109 Metabolic Pathways—Energy on a Cellular Level 109 Control of Metabolism 110 The Evolution of Metabolic Pathways 111 Whole-Body Metabolism—Energy on an Organismal Level 111 A Global View of Biological Energy 113 Photosynthesis 115 Light 115 Chlorophyll and Chloroplasts 115 The Chemical Reactions of Photosynthesis 116 The Light Reactions 117 The Dark Reactions 118 Energy Extraction—From Glucose to ATP Glycolysis 120 Fermentation—In the Absence of Oxygen 121 Aerobic Respiration—In the Presence of Oxygen How Did the Energy Pathways Evolve? 124 Summary 128 **Questions** 128 To Think About 129

Chapter 7

Mitosis 130

Suggested Readings 129

Chapter Outline 130 Learning Objectives 130 Mitosis Provides Growth, Development, Repair, and Reproduction 131 The Cell Cycle 131 Interphase 131 Mitosis 133 Variations in Mitosis Among Different Species 135 How Is Mitosis Controlled? 137 A Mitosis "Trigger" 137 A Cellular Clock 137 Hormones 137 Growth Factors 137 A Cell's Size 138 A Cell and Its Neighbors—The Effect of

Crowding 138

Mitosis During Development Is Highly Regulated
139
Cell Populations 139
Cancer—When the Cell Cycle Goes Awry
141
Characteristics of Cancer Cells 141
The Causes of Cancer 145
Summary 150
Questions 150
To Think About 151
Suggested Readings 151

<u>U N I T</u>

Reproduction and Development 153

Chapter 8

Human Meiosis and Reproduction 154

Chapter Outline 154 Learning Objectives 154 The Human Male Reproductive System 155 The Human Female Reproductive System 155 Meiosis 157 Stages of Meiosis 157 Meiosis Leads to Genetic Variability 161 Development of the Sperm— Spermatogenesis 163 Development of the Ovum— Oogenesis 165 Summary 166 Questions 166 To Think About 166 Suggested Readings 166

Chapter 9

A Human Life—Development Through Aging 167

Chapter Outline 167 Learning Objectives 167 The Stages of Prenatal Development 168 The Preembryonic Stage 171 Fertilization 171 Cleavage 172 Implantation 173 The Primordial Embryo 175 The Embryonic Stage 179 Supportive Structures 179 The Embryo 180 The Fetal Period 183 Labor and Birth 184 Maturation and Aging 186 Aging Over a Lifetime 186 What Triggers Aging? 187 Aging as a Passive Process 187 Aging as an Active Process 188

Accelerated Aging Disorders Provide Clues to the Normal Aging Process 188 Dealing With Aging 189 Summary 191 Questions 192 To Think About 192 Suggested Readings 192

Chapter 10

Human Reproductive and Developmental Problems 193

Chapter Outline 193 Learning Objectives 193 Infertility 196 Male Infertility 196 Female Infertility 197 The Age Factor in Female Infertility 199 Spontaneous Abortion 200 Born too Soon-The Problem of Prematurity 201 Birth Defects 202 The Critical Period 202 Teratogens 202 The Baby Doe Dilemma 204 The Fetus as a Patient 205 Reproductive Alternatives 205 Donated Sperm—Artificial Insemination 205 A Donated Uterus—Surrogate Motherhood 205 In Vitro Fertilization 205 Gamete Intrafallopian Transfer (GIFT) 207 Embryo Adoption 207 Sex and Health 208 Birth Control 208 Terminating a Pregnancy 210 Sexually Transmitted Diseases 210 Summary 212 Questions 213 To Think About 213 Suggested Readings 214

U N I T

Genetics 215

Chapter 11Mendel's Laws 216

Chapter Outline 216
Learning Objectives 216
Mendel's Laws of Inheritance 217
Segregation—Following the Inheritance of One
Gene at a Time 218
Independent Assortment—Following the
Inheritance of Two Genes at a Time 222
Using Probability to Analyze More Than Two
Genes 223
Disruptions of Mendelian Ratios 224

Lethal Alleles 224

The Influence of Gender—Of Breasts and Beards 225 Different Dominance Relationships 225 Penetrance and Expressivity 226 Influences of the Environment 228 Pleiotropy and King George III 231 Genetic Heterogeneity 231 Epistasis—Gene Masking at "General Hospital" 231 Multiple Alleles 232 Phenocopies—When It's Not Really in the Genes 232 Summary 234 **Questions 235** To Think About 235 Suggested Readings 235

Chapter 12

Linkage 236

Chapter Outline 236 Learning Objectives 236 Linkage—Inheritance of Genes That Are Part of the Same Chromosome 237 Matters of Sex 238 Sex Linkage 238 Y Linkage 239 X Inactivation—Equaling Out the Sexes 239 Sex Determination—Male or Female? 242 Sex Ratio 246 Sex Preselection 246 The Changing Science of Genetics 248 Summary 248 Questions 249 To Think About 249 Suggested Readings 249

Chapter 13

Molecular Genetics 250

Chapter Outline 250 Learning Objectives 250 Gene and Protein—An Important Partnership 252 DNA Structure Makes DNA Function Possible 253 DNA Replication—Maintaining Genetic Information 253 Transcription—Transmitting Genetic Information 257 Ribonucleic Acid (RNA) 257 Types of RNA 257 Translation—Expressing Genetic Information 259 The Genetic Code—From a Gene's Message to Its Protein Product 260 Building a Protein 261 Translation Is Efficient 262 The Changing View of the Gene 263 Genes in Pieces-Introns 265 Overlapping Genes 265 The Usually Universal Genetic Code 266

Variations of the Double Helix 266

Jumping Genes 266

Biotechnology 267
Recombinant DNA Technology 270
Constructing Recombinant DNA
Molecules 270
Applications of Recombinant DNA
Technology 272
Transgenic Organisms 273
Sequencing the Human Genome 274
Summary 274
Questions 275
To Think About 276
Suggested Readings 276

Chapter 14

Human Genetics 277

Chapter Outline 277 Learning Objectives 277 Abnormal Chromosomes 278 Extra and Missing Chromosomes— Aneuploidy 280 Down Syndrome—An Extra Autosome 280 Abnormal Numbers of Sex Chromosomes 282 Deletions 283 Translocations 283 Abnormal Single Genes 283 Models of Inheritance 283 Ethnic Diseases 284 Inborn Errors of Metabolism 287 Genetic Defects of the Blood 288 Orphan Diseases 291 "It Runs in the Family" 291 Traits Caused by More Than a Single Gene 291 Nature Versus Nurture—Twin Studies 292 Summary 294 Questions 294 To Think About 295 Suggested Readings 295

Chapter 15

Genetic Disease—Diagnosis and Treatment 296

Chapter Outline 296 Learning Objectives 296 Studying Chromosomes and Genes 297 Pedigrees 297 Chromosome Charts 298 Prenatal Diagnosis 299 Ultrasound 299 Amniocentesis 300 Chorionic Villus Sampling 300 Analyzing Sample Cells 301 Molecular Approaches to Diagnosing Genetic Disease 301 Direct Genetic Disease Diagnosis—RFLPs Within Genes 303 Genetic Markers—RFLPs Outside Genes 303 Genetic Screening 305 Before Pregnancy 305 During Pregnancy 307

Screening Children 307
Genetic Screening in the Workplace 307
Genetic Counseling 307
Medical Genetics, Ethics, and the
Law 308
Gene Therapy 308
Treating the Phenotype—A Short-Term Solution 308
Nonheritable Gene Therapy 308
Heritable Gene Therapy—A Longer-Term Solution 309
Summary 310
Questions 311
To Think About 311
Suggested Readings 311

5

Animal Biology 313

Chapter 16

Neurons 314

Chapter Outline 314
Learning Objectives 314
The Anatomy of a Neuron 315
Types of Neurons 315
A Neuron's Message 317
The Resting Potential 317
The Action Potential 319
The Myelin Sheath and Saltatory
Conduction 320
Synaptic Transmission 321
Disposal of Neurotransmitters 324
Excitatory and Inhibitory
Neurotransmitters 324
Synaptic Integration—How a Neuron Interprets
Its Messages 324
Neurotransmitters 324

Neurotransmitters 324
Psychoactive Drugs and
Neurotransmitters 325
Disease and Neurotransmitters 325
The Biochemistry of Depression 325
Opiates in the Human Body 326
Summary 328
Questions 328
To Think About 329
Suggested Readings 329

Chapter 17

The Nervous System 330

Chapter Outline 330 Learning Objectives 330 Organization of the Vertebrate Nervous System 331 The Central Nervous System 331 The Spinal Cord 331 The Brain 334 Memory 341 Protection of the Central Nervous System 342 The Peripheral Nervous System 342 The Somatic Nervous System 342 The Autonomic Nervous System 344 When Nervous Tissue Is Damaged 345 Neuronal Cell Culture 346 Summary 346 Questions 347 To Think About 347 Suggested Readings 347

Chapter 18

The Senses 348

Chapter Outline 348 Learning Objectives 348 General Principles of Sensory Reception 349 Chemoreception 350 Smell 350 Taste 351 Photoreception 352 The Human Visual System 353 Focusing the Light 356 Converting Light Energy to Neural Messages 357

Mechanoreception 359 Hearing 359 Hearing Loss 360

Balance 362 Touch 363

Thermoreception 363

Detection of Magnetic Fields-A Sixth

Sense? 363 Summary 365 Questions 365 To Think About 365 Suggested Readings 366

Chapter 19

The Endocrine System 367

Chapter Outline 367 Learning Objectives 367 Hormones—Chemical Messengers and Regulators 368 How Hormones Exert Their Effects 369 Peptide Hormones 369 Steroid Hormones 370

Control of Hormone Levels 370

Feedback Loops 370 Neuroendocrine Control—The Hypothalamus

and the Pituitary 371 Pituitary Hormones 373

Anterior Pituitary 373 Posterior Pituitary 375

Intermediate Region 375

The Thyroid Gland 375

The Parathyroid Glands 377

The Adrenal Glands 377 The Adrenal Medulla 377

The Adrenal Cortex 378

The Pancreas 378

Diabetes 379

Hypoglycemia 379 The Gonads 381

The Ovary 381 The Testes 382

The Pineal Gland 382

Hormones Not Associated With Endocrine

Glands 383

Hormonelike Molecules 384

Prostaglandins 384

Pheromones 385

Summary 386

Questions 388

To Think About 388

Suggested Readings 388

Chapter 20

The Skeletal System 389

Chapter Outline 389 Learning Objectives 389 Skeletal Diversity 390 Hydrostatic Skeletons 390 Exoskeletons 390 Endoskeletons 390

The Human Skeletal System 391

Skeletal Functions 391 Composition 391

Bone Growth and Development 394

Before Birth 394

Bone Elongation During Childhood 395

Repair of Fractures 395

Bone as a Mineral Store 395

Skeletal Organization 397

Axial Skeleton 397

Appendicular Skeleton 400

Joints-Where Bone Meets Bone 400

Summary 402 Questions 402

To Think About 402

Suggested Readings 403

Chapter 21

The Muscular System 404

Chapter Outline 404 Learning Objectives 404 Muscle Cell Types 405 Skeletal Muscle Organization 406 Microscopic Structure and Function of Skeletal Muscle 407 How Skeletal Muscle Contracts 408 Energy for Muscle Contraction 410 Macroscopic Structure and Function of Skeletal Muscle 411 Inborn Athletic Ability and Muscle Fiber Types 413 Muscles Working Together 414 Lever Systems 414 Antagonistic Pairs 414 Muscle Tone 416 Effects of Exercise on Muscle 416 Injuries to the Muscular System 417

Summary 417 Questions 418 To Think About 418 Suggested Readings 419

Chapter 22

The Circulatory System 420

Chapter Outline 420 Learning Objectives 420 **Diversity Among Circulatory** Systems 421 The Human Circulatory System 422 Functions of Blood 422

Blood Composition 424 Plasma 424 Red Blood Cells 426

White Blood Cells 427

Platelets 427 Blood Vessels 428

Arteries 429 Capillaries 431 Veins 432 Systemic Circulation 432

Blood Pressure 432

The Heart 434

The Structure of the Pump 434

Heart Valves 434 The Journey of Blood 434 Cardiac Cycle 438 Coronary Circulation 439

Exercise and the Circulatory System 439

The Lymphatic System 441

Summary 442 Questions 443 To Think About 443 Suggested Readings 443

Chapter 23

The Respiratory System 444

Chapter Outline 444 Learning Objectives 444 Why We Need Oxygen 445

Diversity Among Respiratory Systems 445 Body Surface 446 Tracheal Systems 446 Gills 447 Lungs 447 The Human Respiratory System 448 The Nose 448 The Pharynx and the Larynx 449 The Trachea, Bronchi, and Bronchioles 449 The Alveoli 451 The Lungs 453 Mechanism of Breathing 453 Transport of Gases 455

Oxygen 455

Carbon Dioxide 456

Carbon Monoxide Poisoning 457

Control of Respiration 457

The Unhealthy Respiratory System 459

The Common Cold 459
Influenza 459
Bronchitis 459
Emphysema 459
Cystic Fibrosis 460
Tuberculosis 460
Summary 461
Questions 462
To Think About 462
Suggested Readings 462

Chapter Outline 463

Chapter 24

The Digestive System 463

Learning Objectives 463 Eating and Digesting 464 Types of Digestive Systems 465 An Overview of the Human Digestive System 467 Structures of the Human Digestive System 468 The Mouth and the Esophagus 468 The Stomach 469 The Small Intestine 471 The Large Intestine 475 Associated Glands and Organs 477 Summary 479 Questions 480 To Think About 480 Suggested Readings 480

Chapter 25

Nutrition 481

Chapter Outline 481 Learning Objectives 481 Human Nutrition—From a Prehistoric Meal to Fast Food 482 The Nutrients 482 Planning a Balanced Diet 485 The Food Group Plan 486 Dietary Guidelines 486 The Exchange System 487 Nutrient Deficiencies 487 Starvation 490 Marasmus and Kwashiorkor 490 Anorexia Nervosa 490 Bulimia 492 Overweight 492 Gaining Weight 494 Summary 494 **Questions** 494 To Think About 495

Chapter 26

Homeostasis 497

Chapter Outline 497 Learning Objectives 497 Temperature Regulation 498

Suggested Readings 496

Ectothermy and Endothermy 499 Temperature Regulation in Humans 500 Regulation of Body Fluids 502 Nitrogenous Waste Removal 502 Osmoregulation 503 The Human Excretory System—An Overview 504 The Kidney 505 Activities Along the Nephron 506 Bowman's Capsule 506 The Proximal Convoluted Tubule 508 The Loop of Henle 508 The Distal Convoluted Tubule 509 The Collecting Duct 509 Control of Kidney Function 510 The Unhealthy Excretory System 511 Urinary Tract Infections 511 Kidney Stones 511 Kidney Failure 511 Summary 512 Questions 513 To Think About 513 Suggested Readings 513

Chapter 27

The Immune System 514

Chapter Outline 514 Learning Objectives 514 Nonspecific Defenses 515 Phagocytosis 515 Inflammation 515 Antimicrobial Substances 515 Fever 515 Specific Defenses 517 Cells and Chemicals of the Immune System Macrophages 517 The Humoral Immune Response—B Cells Produce Antibodies 518 Antibody Structure 518 The Cellular Immune Response—T Cells 521 Development of the Immune System 522 When Immunity Breaks Down 513 AIDS 523 Severe Combined Immune Deficiency 525 Chronic Fatigue Syndrome 525 Autoimmunity 525 Allergies 525 Altering Immune Function 529 Vaccines—Augmenting Immunity 529 Organ Transplants—Suppressing Immunity 529 Monoclonal Antibodies—Targeting Immunity 531 Biotherapy—Using Immunity to Treat Cancer 534 Summary 535 **Questions** 536 To Think About 536 Suggested Readings 536

<u>U N I T</u>

Plant Biology 537

Chapter 28

Plants Through History 538

Chapter Outline 538
Learning Objectives 538
Plants as Food 539
From Hunters-Gatherers to Farmers—The
Dawn of Agriculture 539
Cereals—Staples of the Human Diet 541
Nature's Botanical Medicine Cabinet 547
Summary 549
Questions 549
To Think About 549
Suggested Readings 550

Chapter 29

Plant Form and Function 551

Chapter Outline 551 Learning Objectives 551 Primary Tissues 552 Meristems 552 Ground Tissue 552 Dermal Tissue 554 Vascular Tissues 555 Parts of the Plant Body 556 Stems 557 Leaves 559 Roots 562 Secondary Growth 566 Summary 568 Questions 569 To Think About 569 Suggested Readings 569

Chapter 30

Plant Life Cycles 570

Chapter Outline 570 Learning Objectives 570 Alternation of Generations 572 Flowering Plant Life Cycle 574 Structure of the Flower 574 Formation of Gametes 574 Pollination 574 Fertilization 577 Seed Development 578 Seed Dormancy 579 Fruit Formation 579 Fruit and Seed Dispersal 580 Seed Germination 580 Plant Development 580 The Pine Life Cycle 583 Asexual Reproduction 584 Summary 585 Questions 585 To Think About 585 Suggested Readings 586

Chapter 31

Plant Responses to Stimuli 587

Chapter Outline 587 Learning Objectives 587 Plant Hormones 588

Auxins 589 Gibberellins 590 Cytokinins 590

Ethylene 590 Abscisic Acid 590

Hormonal Interactions 590

Tropisms 591

Phototropism—A Response to Unidirectional Light 592

Geotropism—A Response to Gravity 592 Thigmotropism—A Response to Touch 592

Nastic Movements 594

Seismonasty 594 Nyctinasty 595

Thigmomorphogenesis 596
Seasonal Responses of Plants to

Seasonal Responses of Plants to the Environment 596

Flowering—A Response to Photoperiod 596 Do Plants Measure Day or Night? 596 Phytochrome—A Pigment Controlling Photoperiodism 597

Other Responses Influenced by Photoperiod and Phytochrome 598

Senescence 599 Dormancy 599

Circadian Rhythms 600

Summary 600 Questions 601

To Think About 601

Suggested Readings 601

Chapter 32

Plant Biotechnology 602

Chapter Outline 602 Learning Objectives 602

The Challenge of Agricultural Biotechnology 603

Traditional Plant Breeding Versus Biotechnology 603

Protoplast Fusion—The Best of Two Cells 604

Cell Culture 605

Cell Culture for Uniformity 606 Cell Culture for Variety 607

Altering Organelles 610

Within the Nucleus—Recombinant DNA Technology 610

Biotechnology Provides Different Routes to Solving a Problem 613

Beyond the Laboratory—Release of Altered Plants to the Environment 615 Summary 615 Questions 616 To Think About 616 Suggested Readings 616

U N I T

Evolution 617

Chapter 33

Darwin's View of Evolution 618

Chapter Outline 618
Learning Objectives 618
Islands Reveal Evolution in Action 621
Macroevolution and Microevolution 621
The Influence of Geology—Clues to
Evolution in Rock Layers 621
The Voyage of the HMS Beagle 623
Darwin's Observations 624
After the Voyage 626
Natural Selection—The Mechanism Behind
Darwinian Evolution 627
Summary 629
Questions 629
To Think About 629
Suggested Readings 629

Chapter 34

The Forces of Evolutionary
Change 630

Chapter Outline 630
Learning Objectives 630
Evolution After Darwin—The Genetics of Populations 631
When Gene Frequencies Stay Constant—Hardy-Weinberg Equilibrium 632
When Gene Frequencies Change 632
Migration and Nonrandom Mating 632
Genetic Drift 632
Mutation 634
Natural Selection 635
Types of Natural Selection 637
Balanced Polymorphism—The Sickle Cell Story 637

How Species Arise 637
Premating Reproductive Isolation 638
Postmating Reproductive Isolation 638
How Species Become Extinct 640
What Causes Mass Extinctions? 640
Mass Extinctions Through Geological
Time 641

Summary 645 Questions 646 To Think About 646 Suggested Readings 646

Chapter Outline 647

Chapter 35

Evidence for Evolution 647

Learning Objectives 647 Fossils 649 How Fossils Form 649 Determining the Age of a Fossil 650 Comparing Structures in Modern Species 651 Comparative Anatomy 651 Vestigial Organs 651 Comparative Embryology 651 Molecular Evolution 652 Comparing Chromosomes 652 Comparing Protein Sequences 653 Comparing DNA Sequences 654 The History of Life on Earth 654 The Geological Time Scale 654 Precambian Life 654 The Paleozoic Era 656 The Mesozoic Era 659 The Cenozoic Era 661 The Evolution of Humans 661 Summary 663 Questions 664 To Think About 664 Suggested Readings 664

Behavior and Ecology 665

Chapter 36

The Behavior of Individuals 666

Chapter Outline 666
Learning Objectives 666
Behavior Is Shaped by Genes and Experience 667
Closed and Open Behavior Programs 667
Genes May Influence Learning 668
Innate Behavior 668
Fixed Action Patterns 668
Releasers 669
Chain Reactions 671
Behavior Is Adaptive 671
How Genes Can Determine Behavior 672
Learning 672
Habituation 672

Classical Conditioning 673 Operant Conditioning 673 Imprinting 673 Insight Learning 674 Latent Learning 674 Biological Clocks 674 A Biological Clock Runs Without Environmental Cues 674

Disrupted Clocks Affect How We Feel 674 Physical Basis of Biological Clocks 677 Rhythms With Other Period Lengths 677 Orientation and Navigation 678 The Compass Sense 678 Homing 681 Summary 681 Questions 682 To Think About 682

Chapter 37

Suggested Readings 682

Social Behavior 683

Chapter Outline 683 Learning Objectives 683 Biological Societies 684 Inside a Beehive 684 A Tent Caterpillar Community 685 Advantages of Group Living 686 Creating More Favorable Surroundings 686 Better Defense 686 Enhanced Reproductive Success 687 Improved Foraging Efficiency 687 Learning 688 Disadvantages of Group Living 688 Social Structure and the Situation 688

Cohesion 689 Chemical Messages 689 Auditory Messages 690 Tactile Messages 691 Visual Messages 692 Altruism 692 Aggression 694 Territoriality 694 Dominance Hierarchies 695 Courtship 696 Mating Systems 696 Primate Mating Behavior 697 Summary 697 **Ouestions** 698 To Think About 698 Suggested Readings 698

Communication and Group

Chapter 38

Populations 699

Chapter Outline 699 Learning Objectives 699 Human Population Growth 700 Population Dynamics 701 Biotic Potential and Exponential Growth 701 A Population's Age Structure 703 Regulation of Population Size 704 Environmental Resistance and the Carrying Capacity 704 "Boom or Bust" Cycles 705 Density Independent Factors 705 Density Dependent Factors 705 Habitat and Niche 706 Predator-Prey Interactions 708 Human Population Growth Revisited-The Future 710 Summary 710 Questions 711

Chapter 39

To Think About 711

Suggested Readings 711

Ecosystems 712

Chapter Outline 712 Learning Objectives 712 An Organism's Place in the World 713 Energy Flow Through an Ecosystem 717 Trophic Levels 717 Stable Isotope Tracing—Deciphering Food Webs Ecological Pyramids 719 Concentration of Chemicals— Biomagnification 721 **DDT 721** Mercury 721 Biogeochemical Cycles 721 The Carbon Cycle 721 The Nitrogen Cycle 721 The Phosphorus Cycle 722 Succession 722

Primary Succession 722 Secondary Succession 723 Terrestrial Biomes 728 Tropical Rain Forest 728 Temperate Deciduous Forest 729 Temperate Coniferous Forest 729 Taiga 729

Grasslands 729 Tundra 733 Desert 733 Freshwater Biomes 733 Lakes and Ponds 734 Rivers and Streams 734 Marine Biomes 734 The Coast 735 The Ocean 737 Summary 740 Questions 741 To Think About 741 Suggested Readings 741

> Chapter 40 Environmental Concerns 742

Chapter Outline 742 Learning Objectives 742 The Human Influence Is Everywhere 745 The Air 745 Acid Precipitation 745 The Greenhouse Effect 749 Destruction of the Ozone Layer 750 The Land 751 The Shrinking Tropical Rain Forest 751 The Encroaching Desert 752 The Vanishing Temperate Forest 753 The Waters 753 A Lake in Danger—Tahoe 753 An Endangered Estuary—The Chesapeake 753 The Oceans 755 Epilogue—Thoughts on the Resiliency of Life 756 Summary 759 Questions 759 To Think About 759 Suggested Readings 760