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Preface to the first edition

In recent years new topological methods, especially the theory of
sheaves founded by J. LERAY, have been applied successfully to algebraic
geometry and to the theory of functions of several complex variables.

H. CartaN and J.-P. SERRE have shown how fundamental theorems
on holomorphically complete manifolds (STEIN manifolds) can be for-
mulated in terms of sheaf theory. These theorems imply many facts of
function theory because the domains of holomorphy are holomorphically
complete. They can also be applied to algebraic geometry because the
complement of a hyperplane section of an algebraic manifold is holo-
morphically complete. J.-P. SERRE has obtained important results. on
algebraic manifolds by these and other methods. Recently many of his
results have been proved for algebraic varieties defined over a field of
arbitrary characteristic. K. Kopaira and D. C. SPENCER have also
applied sheaf theory to algebraic geometry with great success. Their
methods differ from those of SERRE in that they use techniques from
differential geometry (harmonic integrals etc.) but do not make any use
of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HopGE
have dealt successfully with problems on integrals of the second kind on
algebraic manifolds with the help of sheaf theory.

I was able to work together with K. Kopaira and D. C. SPENCER
during a stay at the Institute for Advanced Study at Princeton from
1952 to 1954. My aim was to apply, alongside the theory of sheaves, the
theory of characteristic classes and the new results of R. THoM on
differentiable manifolds. In connection with the applications to algebraic
geometry I studied the earlier research of J. A. Topp. During this time
at the Institute I collaborated with A. BoreL, conducted a long cor-
respondence with THoM and was able to see the correspondence of
Kopaira and SPENCER with SERRE. I thus received much stimulating
help at Princeton and I wish to express my sincere thanks to A. BoreL,
K. KopaAira, J.-P. SErrE, D. C. SPENCER and R. THOM.

This book grew out of a manuscript which was intended for publica-
tion in a journal and which contained an exposition of the results obtained
during my stay in Princeton. Professor F. K. ScHMIDT invited
me to use it by writing a report for the “Ergebnisse der Mathematik”.
Large parts of the original manuscript have been taken over unchanged,
while other parts of a more expository nature have been expanded. In
this way the book has become a mixture between a report, a textbook
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and an original article. I wish to thank Professor F. K. ScuMipT for his
great interest in my work.

I must thank especially the Institute for Advanced Study at Princeton
for the award of a scholarship which allowed me two years of undisturbed
work in a particularly stimulating mathematical atmosphere. I wish
to thank the University of Erlangen which gave me leave of absence
during this period and which has supported me in every way; the Science
Faculty of the University of Miinster, especially Professor H. BEHNKE,
for accepting this book as a Habilitationsschrift; and the Society for the
Advancement of the University of Miinster for financial help during the
final preparation of the manuscript. I am indebted to R. REMMERT and
G. ScHE]JA for their help with the proofs, and to H.-J. NastoLp for
preparing the index. Last, but not least, I wish to thank the publishers
who have generously complied with all my wishes.

Fine Hall, Princeton F. HIRZEBRUCH
23 January 1956

Preface to the third edition

In the ten years since the publication of the first edition, the main
results have been extended in several directions. On the one hand the
RIEMANN-ROCH theorem for algebraic manifolds has been generalised by
GROTHENDIECK to a theorem on maps of projective algebraic varieties
over a ground field of arbitrary characteristic. On the other hand Ativan
and SINGER have proved an index theorem for elliptic differential
operators on differentiable manifolds which includes, as a special case,
the RIEMANN-RocH theorem for arbitrary compact complex manifolds.

There has been a parallel development of the integrality theorems for
characteristic classes. At first these were proved for differentiable mani-
folds by complicated deductions from the almost complex and algebraic
cases. Now they can be deduced directly from theorems on maps of
compact differentiable manifolds which are analogous to the RIEMANN-
RocH theorem of GROTHENDIECK. A basic toolis the ring K (X) formed from
the semi-ring of all isomorphism classes of complex vector bundles over a
topological space X, together with the BotTT periodicity theorem which
describes K (X) when X is a sphere. The integrality theorems also follow
from the ATIYAH-SINGER index theorem in the same way that the
integrality of the Topp genus for algebraic manifolds follows from the
RiemMANN-RocH theorem.

Very recently ATryan and BoTT obtained fixed point theorems of
the type first proved by LEFSCHETZ. A holomorphic map of a compact



Preface IX

complex manifold ¥V operates, under certain conditions, on the co-
homology groups of V with coefficients in the sheaf of local holomorphic
sections of a complex analytic vector bundle W over V. For a special
class of holomorphic maps, ATivyaH and BOTT express the alternating
sum of the traces of these operations in terms of the fixed point set of the
map. For the identity map this reduces to the RIEMANN-ROCH theorem.
Another application yields the formulae of LANGLANDS (see 22.3) for the
dimensions of spaces of automorphic forms. ATivas and BoTT carry
out these investigations for arbitrary elliptic operators and differentiable
maps, obtaining a trace formula which generalises the index theorem.
Their results have a topological counterpart which generalises the
integrality theorems.

The aim of the translation has been to take account of these develop-
ments — especially those which directly involve the Topp genus —
within the framework of the original text. The translator has done this
chiefly by the addition of bibliographical notes to each chapter and
by a new appendix containing a survey, mostly without proofs, of some
of the applications and generalisations of the RIEMANN-RoCH theorem
made since 1956. The fixed point theorems of ATivaH and BoTT could be
mentioned only very briefly, since they became known after the manus-
cript for the appendix had been finished. A second appendix consists of a
paper by A. BoreL which was quoted in the first edition but which has
not previously been published. Certain amendments to the text have
been made in order to increase the usefulness of the book as a work of
reference. Except for Theorems 2.8.4, 2.9.2, 2.11.2, 4.11.1-4.11.4,
10.1.1, 16.2.1 and 16.2.2 in the new text, all theorems are numbered as in
the first edition.

The author thanks R. L. E. SCHWARZENBERGER for his efficient work
in translating and editing this new edition, and for writing the new
appendix, and A. BoreL for allowing his paper to be added to the book.

We are also grateful to Professor F. K. ScHMIDT for suggesting
that this edition should appear in the ““Grundlehren der mathematischen
Wissenschaften”, to D. ARLT, E. BRIESKORN and K. H. MAYER for
checking the manuscript, and to ANN GARFIELD for preparing the

typescript. Finally we wish to thank the publishers for their continued
cooperation.

Bonn and Coventry F. HIRZEBRUCH
23 January 1966 R. L. E. SCHWARZENBERGER
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Introduction

The theory of sheaves, developed and applied to various topological
problems by LEraY [1], [2]), has recently been applied to algebraic
geometry and to the theory of functions of several complex variables.
These applications, due chiefly to CARTAN, SERRE, KODAIRA, SPENCER,
.AT1YAaH and HorGE have made possible a common systematic approach
to both subjects. This book makes a further contribution to this develop-
ment for algebraic geometry. In addition it contains applications of the
results of THOM on cobordism of differentiable manifolds which are of
independent interest. Sheaf theory and cobordism theory together
provide the foundations for the present results on algebraic manifolds.
This introduction gives an outline (0.1—0.8) of the results in the book.
It does not contain precise definitions; these can be found by reference
to the index. Remarks on terminology and notations used throughout the
book are at the end of the introduction (0.9).

0.1. A compact complex manifold V (not necessarily connected) is
called an algebraic manifold if it admits a complex analytic embedding
as a submanifold of a complex projective space of some dimension. By
a theorem of CHow [1] this definition is equivalent to the classical
definition of a non-singular algebraic variety. Algebraic manifolds in
this sense are often also called non-singular projective varieties. In
0.1-0.6 we consider only algebraic manifolds.

Let V, be an algebraic manifold of complex dimension #. The arith-
metic genus of ¥, has been defined in four distinct ways. The postulation
{ormula (H1LBERT characteristic function) can be used to define integers

2.(V,) and P,(V,). These are the first two definitions. SEVERI con-
jectured that

PalVa) = Pa(Vo) =8n— na + -+ (—=1)" g, (1

where g; is the number of complex-linearly independent holomorphic
differential forms on V, of degree ¢ (i-fold differentials of the first kind).
The alternating sum of the g; can be regarded as a third definition of the
arithmetic genus. Further details can be found, for instance, in SEVERI
[1]. Equation (1) can be proved easily by means of sheaf theory (KoDAIRA-
SPENCER [1]) and therefore the first three definitions of the arithmetic
genus agree.

1) Numbers in square brackets refer to the bibliography at the end of the book.
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The form of the alternating sum of g, in (1) is inconvenient and we
modify the classical definition slightly. We call

2(Va) =_z (—1)g, (2)

the arithmetic genus of the algebraic manifold V,. The integer g, in (2)
is the number of linearly independent holomorphic functions on ¥, and
is therefore equal to the number of connected components of V,. It is
usual to call g, the geometric genus of V,, and g, the drregularity of V.
In the case # = 1 a connected algebraic curve ¥V, is a compact RIEMANN
surface homeomorphic to a sphere with p handles. Then g, == g, = p and
the arithmetic genus of V; is 1 — p. The arithmetic genus and the
geometric genus behave multiplicatively:

The genus of the cartesian product V X W of two algebrasic manifolds is
the product of the genus of V and the genus of W.

Under the old terminology the arithmetic genus clearly does not
have this property. The arithmetic genus x{V,) is a birational invariant
because each g; is a birational invariant (KAHLER [1] and VAN DER
WAERDEN (1], {2]). Under the old terminology the arithmetic genus of
a rational variety is 0. According to the present definition it is 1.

0.2. The fourth definition of the arithmetic genus is due to Topb [1].
He showed in 1937 that the arithmetic genus could be represented in
terms of the canonical classes of EGer-Topp (Topp {3]). The proof
is however incomplete: it relies on a lemma of SEVERI for which no
complete proof exists in the literature.

The EcEr-Topp class K; of V, is by definition an equivalence
class of algebraic cycles of real dimension 2# — 2i. The equivalence
relation implies, but does not in general coincide with, the relation
of homology equivalence. For example K, (= K) is the class of canonical
divisors of V,,. (A divisor is canonical if it is the divisor of a meromorphic
n-form.) The equivalence relation for ¢+ =1 is linear equivalence of
divisors. The class K; defines a (2n — 27)-dimensional homology class.
This determines a 2i-dimensional cohomology class which agrees (up
to sign) with the CHERN class ¢; of V.. This ‘‘agreement’” between the
EGeR-ToDD classes and the CHERN classes was proved by Nakano (2]
(see also CHERN [2], HopGE [3] and ATivaH [3]).

Remark: The sign of the 2:-dimensional cohomology class deter-
mined by K, depends on the orientation of V. We shall always use the
natural orientation of V,. If z,, z,, ..., z, are local coordinates with
2z, = %, + t y, then this orientation is given by the ordering x,, y,,
X3, Yo + -+ %n Y OF in other words by the positive volume element

dx,Ndy,Ndx,Ady,\N---ANdx,Ady, In this case K; determines the
cohomology class (— 1)% ¢;.
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In this book we use only the CHERN classes and so the fact that the
EGer-TopD classes agree with the CHERN classes is not needed. The
definition of the Topp genus T(V,) is given in terms of the CHERN
classes. One of the chief purposes of this book is then to prove that
X(Vn) = T(Vn)

0.3. The natural orientation of V, defines an element of the 2#x-
dimensional integral homology group I1,, (V. Z) called the fundamental
cycle of ¥,. The value of a 2n-dimensional cohomology class b on the
fundamental cycle is denoted by b[V,].

The definition of T(V,) is in terms of a certain polynomial T, of
weight n in the CHERN classes ¢; of V,,, the products being taken in the
cohomology ring of V,. This polynomial is defined algebraically in § 1;
it is a rational 2n-dimensional cohomology class whose value on the
fundamental cycle is by definition T (V,). For small n (see 1.7)

TV) =5alVil, T(V) =15 (G +c) Vol T(Vy) =grci6(Vs]l. (3)

The definition implies that T(V,) is a rational number. The equation
2\V,) = T(V,) implies the non-trivial fact that T(V,) is an integer
and that T(V,) is a birational invariant. The sequence of polynomials
{T,} must be chosen so that, like the arithmetic genus, T(V,) behaves
multiplicatively on cartesian products. There are many sequences with
this property: it is sufficient for {T,} to be a multiplicative sequence
(§ 1). The sequence {T,} must be further chosen so that T(V,) agrees
with y(V,) whenever possible. In particular if P,(C) denotes the =-
dimensional complex projective space then T(P,(C)) =1 for all =.
This condition is used in § 1 to determine the multiplicative sequence
{T,} uniquely (Lemma 1.7.1).

For fixed » the polynomial T, is determined uniquely by the following
property: T,{V,1 =14 V="P; (C)x---xP; (C) is a carlesian product
of complex projective spaces with §, + + -+ + j, = n. Therefore T, is the
unique polynomial which takes the value 1 on all rational manifolds of
dimension n.

0.4. The divisors of the algebraic manifold V, can be formed into
equivalence classes with respect to linear equivalence. A divisor is
linearly equivalent to zero if it is the divisor (f) of a meromorphic function
f on V.. This equivalence is compatible with addition of divisors and
therefore the divisor classes form an additive group. We can also consider
complex analytic line bundles (with fibre € and group €C*; see 0.9) over V,,.
In this introduction we identify isomorphic line bundles (see 0.9). Then
the line bundles form an abelian group with respect to the tensor pro-
duct ®. The identity element, denoted by 1, is the trivial complex line
bundle X x C. The inverse of a complex line bundle F is denoted by F-!.
The group of line bundles is isomorphic to the group of divisor classes:
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Every divisor determines a line bundle. The sum of two divisors deter-
mines the tensor product of the corresponding line bundles. Two divisors
determine the same line bundle if and only it they are linearly equivalent.
Finally, every line bundle is determined by some divisor (KoDAIRA-
SPENCER [2]). Denote by H°(V,, D) the complex vector space of all
meromorphic functions f on V, such that D + (f) is a divisor with no
poles. H°(V,, D) is the “RiEMaNN-RocH space” of D and is finite dimen-
stonal. The dimension dim H°(V,, D) depends only on the divisor class of
D. The determination of dim H®(V,, D) for a given divisor D is the
RieMaNN-RocH problem. If F is the line bundle corresponding to the
divisor D then H%(V,, D) is isomorphic to H®(V,, F), the complex
vector space of holomorphic sections of F.

0.5. It has already been said that one aim of this work is to prove
the equation

2{Va) = T(Vy). (4)

The CHERN number ¢,[V,] is equal to the EULER-POINCARE charac-
teristic of V,. Therefore equation (4) gives, for a connected algebraic
curve ¥V homeomorphic to a sphere with p handles:

2V) =T (V) =3¢[Vi]=13(2-2p). )

The RiemMANN-RocH theorem for algebraic curves states (see for instance
WEevyL [1]):

dimHO(V,, D) — dimH(V, K —D)=d + 1 —$ ¥

where d is the degree of the divisor D and K is a canonical divisor of V.
Since dim H°(V,, K) = g, the substitution D = 0 in (4}) gives (4,). It will
be shown that for algebraic manifolds of arbitrary dimension equation
(4) admits a generalisation which corresponds precisely to the generalisa-
tion (4}) of (4,). This generalisation will be given in terms of line bundles
rather than divisors.

Let F be a complex analytic line bundle and let Hi(V,, F) be the
i-th cohomology group of V,, with coefficients in the sheaf of germs of
local holomorphic sections of F. In the case F = 1 this is the sheaf of
germs of local holomorphic functions. The cohomology “group’” HY(V,, F)
is a complex vector space which, by results of CARTAN-SERRE (1] (see
also CArRTAN [4]) and KobaIra [3], is of finite dimension. The vector
space HY\V,, F) is the “RiEMANN-RocH space” of F defined in 0.4.
A theorem of DOLBEAULT [1] implies that dim H(V,,, 1) = g;. The integer
dim H#(V,, F) depends only on the isomorphism class of F and is zero
for i > ». It is therefore possible to define

AVa Fy= Y (1) dimH!(V,, F) . (5)
i

=0
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This is the required generalisation of the left hand side of (4). It will be
shown that yx(V,, F) can be expressed as a certain polynomial in the
CHERN classes of V, and a 2-dimensional cohomology class f determined
by the line bundle F. Here } is the first CHERN class of F (the cohomology
obstruction to the existence of a continuous never zero section of F).
If F is represented by a divisor D then {isalso determined by the (2# — 2)-
dimensional homology class corresponding to D. For small #,

2Ve Py =(f+36)V), 2(VaF)=(3(P+7fc) + 17 (F +cp)[Va],
2V F)=(g P+ cPc+ 51+l + 37 605) [Vs].

This is the generalisation of the RIEMANN-RocH theorem to algebraic
manifolds of arbitrary dimension (Theorem 20.3.2). By the SERRE
duality theorem (see 15.4.2) dim H*(V,, F) = dimH°(V,, K ® F-1) and
dimH*(V,, F) = dimH®(V,, K ® F~') where K denotes the line bundle
determined by canonical divisors. It follows that the equations for
%2(Vy, F) and x(V,, F) imply the classical RiEMaANN-RocH theorem for

an algebraic curve and for an algebraic surface. Full details are given in
19.2 and 20.7.

Kopaira [4] and SERRe have given conditions under which
dimH¥V,, F) = 0 for ¢ > 0 (see Theoremm 18.2.2 and CarTaN (4],
Exposé XVIII). The definition of x(V,, F) in (5) then shows that our
formula for y(V,, F) yields a formula for H°(V,, F). In such cases
the “RIEMANN-ROCH problem” stated in 0.4 is completely solved.
This corresponds for algebraic curves to the well known fact that the
term dim H°(V,, K — D) in (4F) is zero if d > 2p — 2.

0.6. There is a further generalisation of equation {4). Let W be a
complex analytic vector bundle over V,, [with fibre C, and group GL (¢g,C);
see 0.9]. Let H¢(V,, W) be the i-th cohomology group of V, with co-
efficients in the sheaf of germs of local holomorphic sections of W. Then
Hi(V,, W) is again a complex vector space of finite dimension and
dim Hi(V,,, W) is zero for ¢ > n. It is therefore possible to define

1(Va W)= X (= 1) GimH(V,, W) . (6)
im0

It was conjectured by SERRE, in a letter to Kopaira and SPENCER
(29 September 1953}, that x(V,, W) could be expressed as a polynomial
in the CHERN classes of ¥, and the CHERN classes of W. We shall obtain
an explicit formula for the polynomial of y (V,,, W). This is the RIEMANN-
RocH theorem for vector bundles {Theorem 21.1.1). A corollary in the
case n = 1 (algebraic curves) is the generalisation of the RIEMANN-RoOCH

theorem due to WEIL [1]. Full details are given in 21.1.
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The result on y(V,, W) can be applied to particular vector bundles
over V,. We define (see KODAIRA-SPENCER [3])

22 (Va) = 2(Vo, 2 T) Q)

where A? T is the vector bundle of covariant p-vectors of V,,. The CHERN
classes of A? T can be expressed in terms of the CHERN classes of V,,
{Theorem 4.4.3). Therefore x?(V,) is a polynomial of weight # in the
CHERN classes of V,,. By a theorem of DoLBEAULT (1], dimHe(V,, 4* T)
is the number A?.? of complex-linearly independent harmonic forms on

V. of type (p, g). Therefore y?(V,) = 3 (—1)? h#.¢. For example, in the
g=0

case n = 4, there is an equation

(V) =RO— R L BB B =45 (V) — 55 (26,+60) (V). (8)

The sum 3 x#(V,) is clearly zero for n odd. The alternating sum
p=0

»
2 (= 1)? x#(V,) is by theorems of DE Ruam and HODGE equal to the
p=0

EULER-POINCARE characteristic ¢,[V,] of V,. The polynomials for
2?(V,) have the same properties. HODGE [4] proved that for # even the
sum 3 x?(V,) is equal to the index of V,,. By definition the index of V,,
=0

is thz signature (number of positive eigenvalues minus number of negative
eigenvalues) of the bilinear symmetric form x y [V,] (x, y € H*(V,, R)) on
the n-dimensional real cohomology group of V,. Therefore the index
of V, is a polynomial in the CHERN classes of V,. This polynomial can
actually be expressed as a polynomial in the PONTRJAGIN classes of V,
and is therefore defined for any oriented differentiable manifold.

0.7. We have just remarked that the main resuit of this book [the
expression of y(V,, W) as a certain polynomial in the CHERN classes
of V,, and W] implies that the index of an algebraic manifold V,, can be
expressed as a polynomial in the PONTRJAGIN classes of V;,. In fact this
theorem is the starting point of our investigation. Let M3* be an oriented
differentiable manifold of real dimension 4 k. In this work ‘‘differentiable”
always means ‘“‘C*®-differentiable’’ so that all partial derivatives exist
and are continuous. The orientation of M4* defines a 4k-dimensional
fundamental cycle. The value of a 4k-dimensional cohomology class
b on the fundamental cycle is denoted by 5[M*%¥]. In Chapter Two the
cobordism theory of THOM is used to express the index v (M**) of M4*asa
polynomial of weight % in the PONTR]AGIN classes of M4*. For example,

T(MY = 55, (M%), ©(M®) = 35 (75, — D) [M®]. ©
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The formula for (M%) was conjectured by Wu. The formulae for
7{M*) and 7 (M?) were both proved by THom [2]. A brief summary of the

deduction of the formula for ¥ (V,, W) from that for T (M**) can be found
in HirzeBruCH {2].

0.8. The definitions in 0.1—0.6 were formulated only for algebraic
manifolds. In the proof of the RiEMANN-RoOCH theorem we make this
restriction only when necessary. The index theorem described in 0.7 is
proved in Chapter Two for arbitrary oriented differentiable manifolds.
The main results of THOM on cobordism are quoted: the proofs, which
make use of differentiable approximation theorems and algebraic homo-
topy theory, are outside the scope of this work.

In Chapter Three the formal theory of the Topp genus and of the
associated polynomials is developed for arbitrary compact almost
complex manifolds (7-theory). In particular we obtain an integrality
theorem (14.3.2). This theorem has actually little to do with almost
complex manifolds; its relation to subsequent integrality theorems for
differentiable manifolds is discussed in the bibliographical note to
Chapter Three and in the Appendix.

In Chapter Four the theory of the integers y(V,. W) is developed
as far as possible for arbitrary compact complex manifolds (x-theory).
The necessary results on sheaf cohomology due to CARTAN, DOLBEAULT,
Kobaira, SERRE and SPENCER are described briefly. In the course of the
proof it is necessary to assume first that V, is a KAHLER manifold.
Finally, if V, is an algebraic manifold, we are able to identify the
z-theory with the T-theory (RiEMANN-RoOCH theorem for vector bundles;
Theorem 21.1.1).

The Appendix contains a review of applications and generalisations
of the RIEMANN-RoOCH theorem. In particular it is now known that the
identification of the y-theory with the T-theory holds for any compact
complex manifold V, (see §25).

The author has tried to make the book as independent of other
works as is possible within a limited length. The necessary preparatory

material on multiplicative sequences, sheaves, fibre bundles and charac-
teristic classes can be found in Chapter One.

0.9. Remarks on notation and terminology

The following notations are used throughout the book.
Z: integers, Q: rational numbers, R: real numbers, €: complex
numbers, R?: vector space over R of g-ples (x,, . . ., x,) of real numbers,

C,: vector space over € of g-ples of complex numbers. GL(g, R) denotes
the group of invertible ¢ x ¢ matrices (a;;) with real coefficients a,,,
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1. ¢. the group of automorphisms of R?

g
xi= 2 @y xx.

k=1
GL* (g, R) denotes the subgroup of GL(g, R) consisting of matrices
with positive determinant (the group of orientation preserving auto-
morphisms). 0(g) denotes the subgroup of orthogonal matrices of GL (¢, R)
and SO(g) = O(g) n GL*(g, R). Similarly GL(g, C) denotes the group of
invertible g x ¢ matrices with complex coefficients, and U(g) the sub-
group of unitary matrices of GL(g, C). We write C* = GL(1, C), the
multiplicative group of non-zero complex numbers. P,_, (C) denotes the
complex projective space of complex dimension ¢ — 1 (the space of
complex lines through the origin of €,). We shall often denote real
dimension by an upper suffix (for example M**, R%) and complex dimen-
sion by a lower suffix (for example V,, C,).

We have adopted one slight modification of the usual terminology.
An isomorphism class of principal fibre bundles with structure group G
is called a G-bundle. Thus a G-bundle is an element of a certain co-
homology set. On the other hand, we use the words fibre bundle, line
bundle and vector bundle to mean a particular fibre space and not an
isomorphism class of such spaces (see 3.2). In Chapter Four all con-
structions depend only on the isomorphism class of the vector bundles
involved and it is possible to drop this distinction (see 15.1).

The book is divided into chapters and then into paragraphs, which
are numbered consecutively throughout the book. Formulae are num-
bered consecutively within each paragraph. The paragraphs are divided
into sections. Thus 4.1 means section 1 of § 4; 4.1 (5) means formula (5)
ot § 4, which occurs in section 4.1; 4.1.1 refers to Theorem 1 of section 4.1.
The index includes references to the first occurrence of any symbol.

Chapter One

Preparatory material

The elementary and formal algebraic theory of multiplicative
sequences is contained in § 1. In particular the Topp polynomials T},
and also the polynomials L; used in the index theorem, are defined.
Results on sheaves needed in the sequel are collected in § 2. The basic
properties of fibre bundles are given in § 3. In § 4 these are applied to
obtain characteristic classes. In particular, the CHERN classes and
PONTRJAGIN classes are defined. The results of § 1 are not used until § 8.

The reader is therefore advised to begin with § 2 and to refer to § 1 only
when necessary.
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§ 1. Multiplicative sequences

1.1. Let B be a commutative ring with identity element 1. Let
po=1 and let p,, p,, ... be indeterminates. Consider the ring B =
B{p,. pq. . . .] obtained by adjoining the indeterminates p, to B. Then B
is the ring of polynomials in the p, with coefficients in B, and is graded
in the following way:

The product p;, ;, . . . p;, has weight j; + 73+ -+ * + 4, and
B=2 B, (1)
k=0

where B, is the additive group of those polynomials which contain

only terms of weight 2 and B, = B. The group B, is a module over B
whose rank is equal to the number 7 (k) of partitions of %. Clearly

B, B, C B, 4, - 2

1.2, Let {K,} be a sequence of polynomials in the indeterminates p,

with Kg = land K;€®B; (=0,1, 2, ...). The sequence {K,} is called a

multiplicative sequence (or m-sequence) if every identity of the form

T+ prz+pg2®+--

’ ’ " " 3
=(1+prz+pe2+-)(1+pyz+py 22+ ") @
with z, p;, p;’ indeterminate implies an identity

X Ky por - 15 7

- 4)

= Z Kb i) 5 2 KB F )
2

t=0
In abbreviated notation we write

K(Z s z‘) = Y Kipy,...0)2
Jm=0 j=0

both when the p; are indeterminates and when they are replaced by
particular values. The power series

K(1+2)= 30,2 (by=1,b,=K(1,0,...,0)¢B)
1=0

is called the characteristic power series of the m-sequence {K;}.
In the sequel we consider formal factorisations

Vaprat -t pnam= I (1+B;2). (Sm)

t=1
That is, the elements p; are regardid as the elementary symmetric
functions in B8,, ..., f,. The ring B is then the ring of all symmetric



