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Preface to the First Edition

This book is devoted to explaining a wide range of applications of con-
tinuous symmetry groups to physically important systems of differential
equations. Empbhasis is placed on significant applications of group-theoretic
methods, organized so that the applied reader can readily learn the basic
computational techniques required for genuine physical problems. The f{irst
chapter collects together (but does not prove) those aspects of Lie group
theory which are of importance to differential equations. Applications covered
in the body of the book include calculation of symmetry groups of differential
equations, integration of ordinary differential equations, including special
techniques for Euler—Lagrange equations or Hamiltonian systems, differ-
ential invariants and construction of equations with prescribed symmetry
groups, group-invariant solutions of partial differential equations, dimen-
sional analysis, and the connections between conservation laws and sym-
metry groups. Generalizations of the basic symmetry group concept, and
applications to conservation laws, integrability conditions, completely inte-
grable systems and soliton equations, and bi-Hamiltonian systems are covered
in detail. The exposition is reasonably self-contained, and supplemented by
numerous examples of direct physical importance, chosen from classical me-
chanics, fluid mechanics, elasticity and other applied areas. Besides the basic
theory of manifolds, Lie groups and algebras, transformation groups and
differential forms, the book delves into the more theoretical subjects of pro-
longation theory and differential equations, the Cauchy -Kovalevskaya theo-
rem, characteristics and integrability of differential equations, extended jet
spaces over manifolds, quotient manifolds, adjoint and co-adjoint represen-
tations of Lie groups, the calculus of variations and the inverse problem of
characterizing those systems which are Euler-Lagrange equations of some.
variational problem, differential operators, higher Euler opecrators and the



vi Preface to the First Edition

variational complex, and the general theory of Poisson structures, both for
finite-dimensional Hamiltonian systems as well as systems of evolution equa-
tions, all of which have direct bearing on the symmetry analysis of differential
equations. It is hoped that after reading this book, the reader will, with
a minimum of difficulty, be able to readily apply these important group-
theoretic methods to the systems of differential equations he or she is inter-
ested in, and make new and interesting deductions concerning them. If so, the
book can be said to have served its purpose.

A preliminary version of this book first appeared as a set of lecture notes,
distributed by the Mathematical Institute of Oxford University, for a gradu-
ate seminar held in Trinity term, 1979. It is my pleasure to thank the staff of
Springer-Verlag for their encouragement for me to turn these notes into book
form, and for their patience during the process of revision that turned out to
be far more extensive than I originally anticipated.



Preface to the Second Edition

For the second edition, I have corrected a number of misprints and inadver-
tent mathematical errors that found their way into the original version. More
substantial changes are the inclusion of a simpler proof of Theorem 4.26 due
to Alonso, [ 1], and the omission of the false (at least in the form stated in the
first edition) Theorem 5.22 on the commutativity of generalized symmetries.
Also, I have corrected some of the exercises and added several new ones.
Hopefully this now eliminates all of the major (and almost all of the minor)
mistakes. The one substantial addition to the second edition is a short pre-
sentation of the calculus of pseudo-differential operators and their use in
Shabat’s theory of formal symmetries, which provides a powerful, algorithmic
method for determining the integrability of evolution equations.

The years since the appearance of the original edition of the book have
witnessed a remarkable explosion of research, both pure and applied, into
symmetry group methods in differential equations, proceeding at a pace well
beyond my expectations. Innumerable papers, as well as several substantial
textbooks devoted to the subject of symmetry and differential equations,
have appeared in the literature. The former are too numerous to try to list
here, although I have added a few of the more notable contributions to the
list of references and have correspondingly updated the historical notes at the
end of each chapter. Of the latter, I recommend the books of Bluman and
Kumei, {2], and Stephani [3], on symmetry methods, and Zharinov, {1}, on
the geometrical theory of differential equations. There has also been a lot of
activity in the development of computer algebra (symbolic manipulation)
computer programs to (partially) automate the determination of symmetry
groups of differential equations. A good survey of the available codes, as of
1991, including a discussion of their strengths and weaknesses, can be found
in the paper of Champagne, Hereman, and Winternitz, [1].

vii



viii Preface to the Second Edition

I would like to acknowledge, with gratitude, Ian Anderson, Ken Driessel,
Darryl Holm, Niky Kamran, John Maddocks, Jerry Marsden, Sascha
Mikhailov, and Alexei Shabat, who offered valuable comments and sugges-
tions for improving the first edition. Finally, I should reiterate my thankful-
ness and love to my wife, Cheri, and children, Pari, Sheehan, and Noreen, for
their continued, all-important love and support!
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Introduction

When beginning students first encounter ordinary differential equations they
are, more often than not, presented with a bewildering variety of special
techniques designed to solve certain particular, seemingly unrelated types of
equations, such as separable, homogeneous or exact equations. Indeed, this
was the state of the art around the middle of the nineteenth century, when
Sophus Lie made the profound and far-reaching discovery that these special
methods were, in fact, all special cases of a general integration procedure
based on the invariance of the differential equation under a continuous group
of symmetries. This observation at once unified and significantly extended
the available integration techniques, and inspired Lie to devote the remain-
der of his mathematical career to the development and application of his
monumental theory of continuous groups. These groups, now universally
known as Lie groups, have had a profound impact on all areas of mathe-
matics, both pure and applied, as well as physics, engineering and other
mathematically-based sciences. The applications of Lie’s continuous sym-
metry groups include such diverse fields as algebraic topology, differential
geormetry, invariant theory, bifurcation theory, special functions, numerical
analysis, control theory, classical mechanics, quantum mechanics, relativity,
continuum mechanics and so on. It is impossible to overestimate the impor-
tance of Lie’s contribution to modern science and mathematics.
Nevertheless, anyone who is already familiar with one of these modern
manifestations of Lie group theory is perhaps surprised to learn that its
original inspirational source was the field of differential equations. One pos-
sible cause for the general lack of familiarity with this important aspect of
Lie group theory is the fact that, as with many applied fields, the Lie groups
that do arise as symmetry groups of genuine physical systems of differential
equations are often not particularly elegant groups from a purely mathemati-
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Xviii Introduction

cal viewpoint, being neither semi-simple, nor solvable, nor any of the other
special classes of Lie groups so popular in mathematics. Moreover, these
groups often act nonlinearly on the underlying space (taking us outside the
domain of representation theory) and can even be only locally defined, with
the transformations making sense only for group elements sufficiently near
the identity. The relevant group actions, then, are much closer in spirit to
Lie’s original formulation of the subject in terms of local Lie groups acting on
open subsets of Euclidean space, and runs directly counter to the modern ten-
dencies towards abstraction and globalization which have enveloped much
of present-day Lie group theory. Historically, the applications of Lie groups
to differential equations pioneered by Lie and Noether faded into obscurity
just as the global, abstract reformulation of differential geometry and Lie
group theory championed by E. Cartan gained its ascendency in the mathe-
matical community. The entire subject lay dormant for nearly half a cen-
tury until G. Birkhoff called attention to the unexploited applications of
Lie groups to the differential equations of fluid mechanics. Subsequently,
Ovsiannikov and his school began a systematic program of successfully ap-
plying these methods to a wide range of physically important problems. The
last two decades have witnessed a veritable explosion of research activity in
this field, both in the applications to concrete physical systems, as well as
extensions of the scope and depth of the theory itself. Nevertheless, many
questions remain unresolved, and the full range of applicability of Lie group
methods to differential equations is yet to be determined.

Roughly speaking, a symmetry group of a system of differential equations
is a group which transforms solutions of the system to other solutions. In the
classical framework of Lie, these groups consist of geometric transformations
on the space of independent and dependent variables for the system, and act
on solutions by transforming their graphs. Typical examples are groups of
translations and rotations, as well as groups of scaling symmetries, but these
certainly do not exhaust the range of possibilities. The great advantage of
looking at continuous symmetry groups, as opposed to discrete symmetries
such as reflections, is that they can all be found using explicit computational
methods. This is not to say that discrete groups are not important in the
study of differential equations (see, for example, Hejhal, [1], and the refer-
ences therein), but rather that one must employ quite different methods to
find or utilize them. Lie’s fundamental discovery was that the complicated
nonlinear conditions of invariance of the system under the group transforma-
tions could, in the case of a continuous group, be replaced by equivalent,
but far simpler, linear conditions reflecting a form of “infinitesimal” invari-
ance of the system under the generators of the group. In almost every physi-
cally important system of differential equations, these infinitesimal symmetry
conditions—the so-called defining equations of the symmetry group of the
system-—can be explicitly solved in closed form and thus the most general
continuous symmetry group of the system can be explicitly determined. The
entire procedure consists of rather mechanical computations, and, indeed,
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several symbolic manipulation computer programs have been developed for
this task.

Once one has determined the symmetry group of a system of differential
equations, a number of applications become available. To start with, one can
directly use the defining property of such a group and construct new solu-
tions to the system from known ones. The symmetry group thus provides a
means of classifying different symmetry classes of solutions, where two solu-
tions are deemed to be equivalent if one can be transformed into the other by
some group element. Alternatively, one can use the symmetry groups to effect
a classification of families of differential equations depending on arbitrary
parameters or functions; often there are good physical or mathematical rea-
sons for preferring those equations with as high a degree of symmetry as
possible. Another approach is to determine which types of differential equa-
tions admit a prescribed group of symmetries; this problem is also answered
by infinitesimal methods using the theory of differential invariants.

In the case of ordinary differential equations, invariance under a one-
parameter symmetry group implies that we can reduce the order of the equa-
tion by one, recovering the solutions to the original equation from those of
the reduced equation by a single quadrature. For a single first order equa-
tion, this method provides an explicit formula for the general solution. Multi-
parameter symmetry groups engender further reductions in order, but, uniess
the group itself satisfies an additional “solvability” requirement, we may not
be able to recover the solutions to the original equation from those of the
reduced equation by quadratures alone. If the system of ordinary differen-
tial equations is derived from a variational principle, either as the Euler-
Lagrange equations of some functional, or as a Hamiltonian system, then
the power of the symmetry group reduction method is effectively doubled. A
one-parameter group of “variational™ symmetries allows one to reduce the
order of the system by two; the case of multi-parameter symmetry groups is
more delicate.

Unfortunately. for systems of partial differential equations, the symmetry
group is usually of no help in determining the general solution (although in
special cases it may indicate when the system can be transformed into a more
easily soluble system such as a linear system). However, one can use general
symmetry groups to explicitly determine special types of solutions which are
themselves invariant under some subgroup of the full symmetry group of the
system. These “group-invariant” solutions are found by solving a reduced
system of differential equations involving fewer independent variables than
the original system (which presumably makes it easier to solve). For example,
the solutions to a partial differential equation in two independent variables
which are invariant under a given one-parameter symmetry group are all
found by solving a system of ordinary differential equations. Included among
these general group-invariant solutions are the classical similarity solutions
coming from groups of scaling symmetries, and travelling wave solutions
reflecting some form of translational invariance in the system, as well as
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many other explicit solutions of direct physical or mathematical importance.
For many nonlinear systems, these are the only explicit, exact solutions which
are available, and, as such, play an important role in both the mathematical
analysis and physical applications of the system.

In 1918, E. Noether proved two remarkable theorems relating symme-
try groups of a variational integral to properties of its associated Euler-
Lagrange equations. In the first of these theorems, Noether shows how each
one-parameter variational symmetry group gives rise to a conservation law
of the Euler—Lagrange equations. Thus, for example, conservation of energy
comes from the invariance of the problem under a group of time translations,
while conservation of linear and angular momenta reflect translational and
rotational invariance of the system. Chapter 4 is devoted to the so-called
classical form of Noether’s theorem, in which only the geometrical types of
symmetry groups are used. Noether herself proved a far more general result
and gave a one-to-one correspondence between symmetry groups and con-
servation laws. The general result necessitates the introduction of “general-
ized symmetries” which are groups whose infinitesimal generators depend
‘not only on the independent and dependent variables of the system, but also
the derivatives of the dependent variables. The corresponding group trans-
formations will no longer act geometrically on the space of independent and
dependent variables, transforming a function’s graph point-wise, but are non-
local transformations found by integrating an evolutionary system of partial
differential equations. Each one-parameter group of symmetries of a varia-
tional problem, either geometrical or generalized, will give rise to a conserva-
tion law, and, conversely, every conservation law arises in this manner. The
simplest example of a conserved quantity coming from a true generalized
symmetry is the Runge-Lenz vector for the Kepler problem, but additional
recent applications, including soliton equations and elasticity, has sparked
a renewed interest in the general version of Noether's theorem. In Section
5.3 we prove a strengthened form of Noether’s theorem, stating that for
“normal” systems there is in fact a one-to-one correspondence between non-
trivial variational symmetry groups and nontrivial conservation laws. The
condition of normality is satisfied by most physically important systems of
differential equations; abnormal systems are essentially those with nontrivial
integrability conditions. An important class of abnormal systems, which do
arise in general relativity, are those whose variational integral admits an
infinite-dimensional symmetry group depending on an arbitrary function.
Noether’s second theorem shows that there is then a nontrivial relation
among the ensuing Euler-Lagrange equations, and, consequently, nontrivial
symmetries giving rise to only trivial conservation laws. Once found, conser-
vation laws have many important applications, both physical and mathe-
matical, including existence results, shock waves, scattering theory, stability,
relativity, fluid mechanics, elasticity and so on. See the notes on Chapter 4 for
a more extensive list, including references.
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Neglected for many years following Noether’s prescient work, generalized
symmetries have recently been found to be of importance in the study of
nonlinear partial differential equations which, like the Korteweg-de Vries
equation, can be viewed as “completely integrable systems”. The existence
of infinitely many generalized symmetries, usually found via the recursion
operator methods of Section 5.2, appears to be intimately connected with the
possibility of linearizing the system, either directly through some change of
variables, or, more subtly, through some form of inverse scattering method.
Thus, the generalized symmetry approach, which is amenable to direct cal-
culation as with ordinary symmetries, provides a systematic means of rec-
ognizing these remarkable equations and thereby constructing an infinite
collection of conservation laws for them. (The construction of the related
scattering problem requires different techniques such as the prolongation
methods of Wahlquist and Estabrook, [1].) A systematic method for deter-
mining evolution equations having recursion operators, and hence classifying
“integrable” systems, is provided by the theory of formal symmetries.

A number of the applications of symmetry group methods to partial differ-
ential equations are most naturally done using some form of Hamiltonian
structure. The finite-dimensional formulation of Hamiltonian systems of or-
dinary differential equations is well known, but in preparation for the more
recent theory of Hamiltonian systems of evolution equations, we are required
to take a slightly novel approach to the whole subject of Hamiltonian me-
chanics. Here we will de-emphasize the use of canonical coordinates (the p’s
and g's of classical mechanics) and concentrate instead on the Poisson bracket
as the cornerstone of the subject. The result is the more general concept of a
Poisson structure, which is easily extended to include the infinite-dimensional
theory of Hamiltonian systems of evolution equations. An important special
case of a Poisson structure is the Lie—Poisson structure on the dual to a Lie
algebra, originally discovered by Lie, and more recently used to great effect
in geometric quantization, representation theory, and fluid and plasma me-
chanics. In this general approach to Hamiltonian mechanics, conservation
laws can arise not only from symmetry properties of the system, but also
from degeneracies of the Poisson bracket itself. In the finite-dimensional
set-up, each one-parameter Hamiltonian symmetry group allows us to re-
duce the order of a system by two. In its modern formulation, the degree of
reduction available for multi-parameter symmetry groups is given by the
general theory of Marsden and Weinstein, which is based on the concept of
a momentum map to the dual of the symmetry Lie algebra. In more recent
work, there has been a fair amount of interest in systems of differential
equations which possess not just one, but two distinct (but compatible)
Hamiltonian structures. For such a “bi-Hamiltonian system”, there is a
direct recursive means of constructing an infinite hierarchy of mutually com-
muting flows (symmetries) and consequent conservation laws, indicating the
system’s complete integrability. Most of the soliton equations, as well as
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some of the finite-dimensional completely integrable Hamiltonian systems,
are in fact bi-Hamiltonian systems.

Underlying much of the theory of generalized symmetries, conservation
laws, and Hamiltonian structures for evolution equations is a subject known
as the “formal calculus of variations”, which constitutes a calculus specifically
devised for answering a wide range of questions dealing with complicated
algebraic identities among objects such as the Euler operator from the calcu-
lus of variations, generalized symmetries, total derivatives and more general
differential operators, and several generalizations of the concept of a differen-
tial form. The principal result in the formal variational calculus is the local
exactness of a certain complex—called the “variational complex”—which is
in a sense the proper generalization to the variational or jet space context of
the de Rham complex from algebraic topology. In recent years, this varia-
tional complex has been seen to play an increasingly important role in the
development of the algebraic and geometric theory of the calculus of varia-
tions. Included as special cases of the variational complex are:

(1) a solution to the “inverse problem of the calculus of variations”, which
is to characterize those systems of differential equations which are the
Euler-Lagrange equations for some variational problem;

(2) the characterization of “null Lagrangians”, meaning those variational
integrals whose Euler—Lagrange expressions vanish identically, as total
divergences; and .

(3) the characterization of trivial conservation laws, also known as “null
divergences”, as “total curls”.

Each of these results is vital to the development of our applications of Lie
groups to the study of conservation laws and Hamiltonian structures for
evolution equations. Since it is not much more difficult to provide the proof
of exactness of the full variational complex, Section 5.4 is devoted to a com-
plete development of this proof and application to the three special cases of
interest.

Although the book covers a wide range of different applications of Lie
groups to differential equations, a number of important topics have neces-
sarily been omitted. Most notable among these omissions is the connection
between Lie groups and separation of variables. There are two reasons for
this: first, there is an excellent, comprehensive text— Miller, [3]}—already
available; second, except for special classes of partial differential equations,
such as Hamilton-Jacobi and Helmholtz equations, the precise connections
between symmetries and separation of variables is not well understood at
present. This is especially true in the case of systems of linear equations, or
for fully nonlinear separation of variables; in neither case is there even a good
definition of what separation of variables really entails, let alone how one
uses symmetry properties of the system to detect coordinate systems in which
separation of variables is possible. I have also not attempted to cover any of
the vast area of representation theory, and the consequent applications to
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special function theory; see Miller, [1] or Vilenkin, [1]. Bifurcation theory is
another fertile ground for group-theoretic applications; I refer the reader to
the lecture notes of Sattinger, [1], and the references therein. Applications
of symmetry groups to numerical analysis are given extensive treatment in
Shokin, [1], and Dorodnitsyn, [1]. Applications to control theory can be
found in van der Schaft, [1], and Ramakrishnan and Schaettler, [1]. See
Maeda, [1], and Levi and Winternitz, [2], for applications to difference
and differential-difference equations. Extensions of the present methods to
boundary value problems for partial differential equations can be found in
the books of Bluman and Cole, [1], and Seshadri and Na, [1], and to free
boundary problems in Benjamin and Olver, [1]. Although [ have given an
extensive treatment to generalized symmetries in Chapter 5, the related con-
cept of contact transformations introduced by Lie has not been covered, as
it seems much less relevant to the equations arising in applications, and, for
the most part, is subsumed by the more general theory presented here; see
Anderson and Ibragimov, (1], Bluman and Kumei, [2], and the references
therein for these types of transformation groups. Finally, we should mention
the use of Lie group methods for differential equations arising in geometry,
including, for example, motions in Riemannian manifolds, cf. Ibragimov, [1],
or symmetric spaces and invariant differential operators associated with them,
cf. Helgason, [1], [2].



Notes to the Reader

The guiding principle in the organization of this book has been so as to
enable the reader whose principal goal is to apply Lie group methods to
concrete problems to learn the basic computational tools and techniques
as quickly as possible and with a minimum of theoretical diversions. At
the same time, the computational applications have been placed on a solid
theoretical foundation, so that the more mathematically inclined reader can
readily delve further into the subject. Each chapter following the first has
been arranged so that the applications and examples appear as quickly as
feasible, with the more theoretical proofs and explanations coming towards
the end. Even should the reader have more theoretical goals in mind, though,
I would still strongly recommend that they learn the computational tech-
niques and examples first before proceeding to the general theory. It has been
said that it is far easier to abstract a general mathematical theory from a
single well-chosen example than it is to apply an existing abstract theory to
a specific example, and this, I believe, is certainly the case here.

For the reader whose main interest is in applications, I would recommend
the following strategy for reading the book. The principal question is how
much of the introductory theory of manifolds, vector fields, Lie groups and
Lie algebras (which has, for convenience, been collected together in Chapter
1 and Section 2.1), really needs to be covered before one can proceed to the
applications to differential equations starting in Section 2.2. The answer is, in
fact, surprisingly little. Manifolds can for the most part be thought of locally,
as open subsets of a Euclidean space R™ in which one has the freedom to
change coordinates as one desires. Geometrical symmetry groups will just be
collections of transformations on such a subset which satisfy certain elemen-
tary group axioms allowing one to compose successive symmetries, take in-
verses, etc. The key concept in the subject is the infinitesimal generator of a
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