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Introduction

One of the most important problems for applied mathematicians, theoretical
scientists or systems analysts is the investigation of a system by first obtaining
a mathematical model, and then determining such properties as existence.
uniqueness and regularity of solutions, stability of equilibrium points. con-
trollability and so on. Although these modelling techniques are usually
acquired from experience in a particular field, there is often a parallel
technique in some other field. Whereas formulating and examining thesc
models usually involves the use of a priori knowledge of the system and
extensive manipulation the main ideas can be expressed very simply. In
order to teach these skills it is necessary to usc a framework which allows a
large class of systems to be considered in the same formulation. Such an
abstract approach is provided by functional analysis. In fact there is an ever
increasing literature in engineering, theoretical physics. applicd mathematics,
economics and other applied fields written in this mathematical language
which to the uninitiated seems very abstract and incomprchensible. So
what is functional analysis, and why has it become so fashionable?

First you may ask if functional analysis is some powerful technique which
leads to solutions unobtainable by traditional methods. Unfortynately this
is rarely the case. The strength and appeal of functional analysis is that it is
a convenient way of examining the behaviour of various mathematical
models, and it clarifies, rigorizes, and unifies the underlying concepts.

It clarifies because functional analysis is a generalization and combination
of linear algebra, analysis, and geometry expressed in a simple mathematical
notation which allows these three aspects of the problem to be easily seen.
It rigorizes, because it has the back up of a vast mathematical machinery
which subsumes many of the classical results on differential equations.
analysis, numerical methods, and applied mathematical techniques. It
unifies, because the simple notation does away with many of the complicating
details leaving the essentials standing out clearly, so that problems from
many different fields have the same functional analytical symbolism.
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viii INTRODUCTION

Functional analysis is the mathematicians ‘‘black box” diagram where inputs
and outputs beiong to spaces and the black box is an operator.

There are several excellent books on functional analysis and we have
referenced some of these at the end of each chapter. However in the last
few years research-workers in applied sciences have sought a working
knowledge of functional analysis which would help them in their particular
field, and this is not readily obtained by reading a standard text on functional
analysis. This demand has been recognised by various institutes and we have
lectured at vacation schools for the Institute of Mathematics and its Applica-
tions (IMA) at Warwick, UK., Institute of Electrical Engineers (IEE) at
Oxford, UK., and United Nations Educations, Scientific and Cultural
Organization (UNESCO) at Trieste, [taly. Although there are some excellent
books which specialize in a particular area of application such as Blum [1]
and Luenberger {2], we felt that there was a need for a book which illustrated
the application of functional analysis in a variety of fields. Quite apart from
the research considerations we have been concerned with establishing and
teaching a three year undergraduate course in Modern Apphed Mathematics
at the University of Warwick. The students take courses in algebra, analysis,
sets and groups, and differential equations in their first two years and we have
taught most of the material in this book in third year courses on Applied
Functional Analysis, Modern Control Theory, and Stability Theory. From
this experience we have found that these courses provide a valuable link
between pure mathematics and applied mathematics which is often mlssmg
from more traditional applied mathematics courses.

We expect the reader to have had a first course in functional analysis or
to have read a book like Naylor and Sell [3]. So the first third of the book
consists of a sequence of definitions and theorems interleavened with many
examples which we hope will illustrate the main ideas. The purpose is to
establish a uniform notation and cover the background material in topo-
logical spaces, linear operators and calculus which we require for the applica-
tions sections. The next sections on differential equations and spectral
theory are also contained in many books on functional analysis, but because

- of the particularly important role of these areas in applied mathematics we
have included most of the proofs of the fundamental results. The remaining
applications sections are self-contained with complete proofs and we feel
that the chapters on stability, linear systems theory, optimization and
numerical methods could form the basis of lecture courses for final year
undergraduates. Although the material we have chosen to illustrate the
usefulness of functional analysis is entirely subjcctive we have included
references at the end of each chapter whnch give a much more complete
picture of each application area.

Finally the chapter on infinite dimensional control theory reficcts our



INTRODUCTION X

research interests and in fact comprises part of a Masters Course in Control
Theory we teach at Warwick. Consequently it is not appropriate in an
undergraduate course. Our reason forincluding this chapter is tdkllustrate
how, by using functional:analysis, it is possible to study vefgplarge classes
of systems with very different physical behaviour using the same mathe-
matical formulation. '

Warwick R.F.C.
January 1977 AJ.P.
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CHAPTER 1
Normed Linear Spaces

The concept of a normed linear space is fundamental to functional analysis
and is most easily thought of as a generalization of n-dimensional Euclidean
vector space ®" = {x:x = (x,,...,X,), X; € &, the real numbers} with the
euclidean length function ||. ||: #" — #7 (the positive real numbers) given by

<l = X Ixl®

i=1

In fact it is just a linear vector space with a length function or norm defined
on it. First we review the basic properties of linear vector spaces.

Definition 1.1. Linear vector space

A linear vector space W over a scalar field # is a nonempty set W with a
mapping:(x,, x,) = x; ® x, from W x W into W, which we call addition,
and a mapping:(«, x) - ax from F x W into W which we call scalar multi-
plication. These mappings satisfy the conditions:

MxPy=y®x, forall x, yeW
(the commutative property).
Qx®yPz=xD(y Dzforalix,yzeW
(the associative property).
(3) For each x € W, there exists a unique element 0 in W such that

xPO0=0Dx =x

(the existence of the zero element 0). _
(4) For each x € W, there is a unique element —x € W such that

xX® —-x=0.

(the existence of an inverse).
(5) a(Bx) = (af)x for all xe W and all a, fe #.

3



4 NORMED LINEAR SPACES

6y tx + Brx = ax® fyforall xeWand all o, f e #.
(M auUx @ y) = ax @y forall x, ye W and all x e Z.
(8) 1x = x for all x e W, where 1 is the unit element of the scalar field #.

In this book, # will be either the real number field, &, or the complex
number field, € ; W over Z is called a real vector space, and W over € is called
a complex linear vector space. (Where we do not explicitly mention # in
examples weshallbe taking # = ). Weillustrate this concept by considering

a number of very common linear vector spaces.

Example 1.1. Take W = Zand F = & with @ ordinary addition, and scalar
multiplication ordinary multiplication.

Example 1.2. Take W to be the set of all real polynomials of degree n and
F = A.This is clearly a real linear vector space, and if we consider complex
polynomials and # = &, we obtain a complex linear vector space.

Example 1.3. Take W = 2"
A= {x:x=(x,....x ) q;eRii=1,...n}.
with
x@y=(x,+y.,....x, + y)
and
ax = (ax,,...,ax,)forae &

Itis easily verified that W is a linear vector space over &, but W is not a linear
vector space over %.

Example 1.4. Take W to be the set of all complex valued m x n matrices and
F=%.

Example 1.5. Let W be the set of all scalar-valued functions u: S - &%, where
S is any nonempty set. Then for any s€ S, u(s) is in #, and we may define
v ®rand au:(u Do)s) = u(s) + v(s) for all se S; u, ve W. (auXs) = au(s) for
allae F ueW.

Example 1.6. Take W to be the set of Riemann integrable real-valued functions
on (0, 1), such that | |u(s)|* ds < oc. If we let # = % and define addition and
scalar multiplication as in Example 1.5 above, then u, ve W implies that
u@vand xue W.

1 1
ie. J fu(s) + v(s)]*ds < oc and f |ou(s)|* ds < oo.
4] (4]



SCHWARZ’S INEQUALITY 5
The last inequality is trivial and for the first we have

~

1 1
J luts) + v(s)?ds < | (u(s)]> + 2[uls) || ()| + |As)]*) ds
0 Jo
1 1 1/2 1 1/2
< | |us)]* ds + Z(J- |u(s)? ds) ([ |v(s)]ds)
Jo 0 0
r
+ | |vls)|*ds
Jo

where we have used the very useful inequality:

Schwarz’s inequality

1 1 172 /{1 1/2
(1.1) Jlu(s)v(s)ldss([ |u(s)|2ds> (f |v(s)'2ds>
[} (1] o

provided u and v are square Riemann integrable (see Chapter 2, 2.13 for a
generalization of this inequality).

This example is a special type of subset of the vector space of Example 1.5
with § = (0, 1), which we call a linear subspace.

Definition 1.2. Linear subspace

If W is a linear vector space over #, then a subset S of W is a linear subspace
ifx,yeS = ax ® By e S, forall scalars a, § € F (i.e. S is closed under addition
and scalar multiplication and so is itself a linear vector space over #). Other
examples of linear subspaces are:

Example 1.7. In Example 1.3 let S be the set of n-tuples of the form

x =[x, x,0...,0)

Example 1.8. In Example 1.4, let S be the set of matrices with certain blocks
zZero.

Example 19. In Example 1.2, let W be the set of all rth order polynomials
wherer < n.

A feature of linear subspaces is that they all contain the zero element. If we
translate the origin of a linear subspace, we obtain an affine subset (sometimes
called a linear manifold or a linear variety).



6 NORMED LINEAR SPACES
Definition 1.3. Affine subset

If W is a linear vector space over &, then an affine subset M has the form
M {r:x = ¢+ x4 where ¢ is a fixed element of W}

and x, €S, a linear subspace of W

Example 1.10. In Example 1.3, let M be the set of n-tuples of the form
x=(x;,x,1...,1)

Example 1.11.In Example 1.4, let M be the set of matrices with certain blocks
of Is.

Example 1.12. In 92° all lines and planes through the origin are subspaces,
whereas lines and planes not passing through the origin are affine subsets.

Definition 1.4. Hyperplane
A hyperplane M of a vector space W is a maximal proper affine subset of W.
_ xeW:x =c+ x,, where ce W is fixed and
ve. M= { X €95, 4 subspace of W }
and S is maximal in the sense that any other subspace 1s either contained in §

oris W itself.

Example 1.13. Hyperplanes in %7 are lines; hyperplanes in #° are planes.
A fundamental concept for linear vector spaces is that of dimension, but
first we need a few more definitions.

Definition 1.5. Linear dependence and independence

Ifx,,x,,..., x, are elements of W, a linear vector space over #, and there
are scalars «,, ,,...,«, notall zerosuch that

ax, +ox,+ ...+ ax, =0,
then we say that x,, x,, ..., x, is a linearly dependent set. If no such set of
scalars exist, then we say that x,..., x_ are linearly independent
Example 1.14. {1,1,1*,...,t"} is a linearly independent set in W of Example

1.2. However {1 + t,1 + 3t, 2t} is a linearly dependent set, since

L+ 0+ 520 -+ 30 =0
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Example 1.15. In #° any 3 noncoplanar vectors form a linearly independent
set.

Linearly independent vectors {x,, x,, ..., X,} may be used to generate a
linear subspace. This is accomplished by considering all possible linear
combinations of x , x,,..., X

Definition 1.6. Span of vectors

If x,, x,,...,x, are elements of a linear vector space W, then

Span{x,,...,x,} = {xe W:x = Z %, aief}

i=1

Then Span {x,,..., x,} is a subspace of W and we say that it is spanned by
{x,,...,x,}. This leads us to the concept of dimension.

Definition 1.7. Dimension of linear vector spaces

If thelinear vector space W is spanned by a finite set of linearly independent
vectors x,,..., x, (ie. W = Span {x,,..., x,}). Then we say W has dimension
n. If there exists no such set of vectors, W is said to be infinite dimensional.

Definition 1.8. Hamel basis
If the linear vector space W = Span {x,,...,x,} for some set of linearly
independent vectors x,... ., x,. then this set is called a (Hamel) basis for W.

Note that the basis for W is not unique, but the dimension of W is.

Example 1.16. The dimension of 2 of Example 1.1 is of course 1 and a basis is
{a}, 2 # 0.

Example 1.17. The dimension of Example 1.2 is (n + 1) and a basis is
602, t"}. Another possible basis is 1i e set of Legendre polynomials
{1,1, 3t = 1/2,..., d"(t* — 1)'/d1"}, (see Example 4.8).

Example 1.18. In Example 1.3, the dimension of #" is, of course, n and a basis
is(1,0,...,(0,1,0,...),...(0,0,...,1).

Example 1.19. Example 1.6 is an infinite dimensional linear vector space and
so is Example 1.5 if S is an infinite set.

Finite dimensional linear vector spaces are very special and are “just like”
A" or €”. To make this comparison more precise we define.
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Definition 1.9, Isomorphic linear vectof spaces

Linear vector spaces W, and W, are isomorphicif there is a bijective map T:
W, — W, such that

Tloax @ By) = (Tx) DP(Ty) forall o, feF;x,yeW.

(This property of T is known as linearity—see Definition 3.1).

A major result of linear algebra is that all finite dimensional real linear vector
spaces are isomorphic to 2" and all finite dimensional complex linear vector
spaces are isomorphic to €.

So far we have only been discussing algebraic properties of sets, but now
we introduce a generalization of the concept of “length” for abstract sets.

Definition 1.10. Norm

A norm is a non-negative set function on a linear vector space, || . | : W - #*

such that

(1) | x| = 0.if and only if x = 0.
Q) |x @y < x| + |ly| forall x, ye W
(the triangle inequality).
(3) lax|| = o |x]|| for alt xe W and a e #.
(If (1) is not true, we call |. || a seminorm—see Definition 7.12).

Definition 1.11. Normed linear space

A normed linear space is a linear vector space X with a norm |. |, on it,
and is denoted by (X, ||.|| ;). Usually where there will be no confusion we just
write X, and use | .||, for the norm, and + for addition in X.

As our first notion of norm came from the euclidean length function, it is
appropriately our first example.

Example 1.20. Let X = 2" and |. || be defined by

Il = (£ 1)

This may be proved using the Schwarz inequality

which is valid for n finite or infinite.
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This is only one of several norms we can define for #", for example

x|, = max |x]

fi<n

nxu,,=(2\x‘|v) <p<on
i=1

all define norms on #".
The proofthat the p-normisin facta normmay be proved using M inkowski’s

inequality

n 1/p n’ 1/p n 1/p
03 (Ernear) <(Ep)" (L)
i=1 i=1 i=1

which is valid for n finite or infinite. ‘

&"also becomes a normed linear space under these norms.We havea special
notation for & (or €") under the p-norm, namely I, and under the co-norm,
r.

Example 1.21. Take X to be the linear vector space of infinite sequences
x =(x;, %, .). Then using Minkowski’s inequality we may also define

a p-norm.

K 1/p

Uxi[p:(Z Ix'.|”> for 1<p< 0.

i=1
although it may not always be finite. However, restricting ourselves to those
elements with finite p-norm, we have a linear vector space [ = {x = (x,, -
X;...)with |x||, < oo}, for 1 < p < oc. Notice that for p # ¢, 1, and [, will
not contain the same set of elements, because there exists constants ¢
i=1,2,...suchthatc |x||, Z¢c,lx]||, >...andso [, < |, = .. . Another
norm on the space of infinite sequences is || |.» where x|, = sup |x}.

1€iSw

and this defines the normed linear space
= {x = (x,,x,,...) with ||x| , < oo}
and [l > forp 21
Example 1.22. Consider the function space X = C[a, b], the space of con-

tinuous complex-valued functions defined on [a,b] with norm [uf =

sup |u(t)|. This is called the uniform or sup norm.
FESEY ]

Example 1.23. Consider X = C[a,b] under the p-norm

ful, = ([ 1o ar)



