CLASSICAL
MATHEMATICAL

PHYSICS
2 WL AP ssm

Third Edition

Springer HENEE RS
www.wpcbj.com.cn




BHEMmSMB (C 1 P) Hig

2 RSP = Classical Mathematical Physics: $3hK:
#/ (48) FH (Thirring, W.) F.—dtxt. #HFEBHR
AFARAT, 2007.10

ISBN 978—7—-5062—8237—6

1. & 0.8 NRFWEYE— L V.0411.1
FERAEBECIPEEST (2007) 351490005

3 #:  Classical Mathematical Physics 3rd ed.
£ #: Walter Thirring

hoE R MBERE B3R

BiERE: BEF WX

H & HREBHRARLRAR

ED Rl &: =W EKNSERAFR

® 47 HAEBHRATARAT @EREFRXE 1375 100010)
BXREIE:  010-64015659, 64038348

BFEME:  kjsk@vip.sina.com

F F: 2uFH

D ¥: 245

MR &k: 200841 A 1 XEIRI
REAREIE:  EF:01-2007-4599

+ S:  978-7-5062-8237-6/ O * 566 3 #:  58.00 70

R EE UL B L =4 5l 2 3518 Springer I#ERE AR EBEN AT



Preface to the Third Edition

This edition combines the earlier two volumes on Classical Dynamical Systems
and on Classical Field Theory, thus including in a single volume the material for
a two-semester course on classical physics.

In preparing this new edition, I have once again benefited from valuable sug-
gestions and corrections made by M. Breitenecker.

Vienna, Austria, February 1997 Walter Thirring



Preface to the Second Edition:
Classical Dynamical Systems

The last decade has seen a considerable renaissance in the realm of classical dy-
namical systems, and many things that may have appeared mathematically overly
sophisticated at the time of the first appearance of this textbook have since become
the everyday tools of working physicists. This new edition is intended to take this
development into account. I have also tried to make the book more readable and
to eradicate errors.

Since the first edition already contained plenty of material for a one-semester
course, new material was added only when some of the original could be dropped
or simplified. Even so, it was necessary to expand the chapter with the proof of the
K-A-M theorem to make allowances for the current trend in physics. This involved
not only the use of more refined mathematical tools, but also a reevaluation of the
word fundamental. What was earlier dismissed as a grubby calculation is now seen
as the consequence of a deep principle. Even Kepler’s laws, which determine the
radii of the planetary orbits, and which used to be passed over in silence as mystical
nonsense, seem to point the way to a truth unattainable by superficial observation:
The ratios of the radii of Platonic solids to the radii of inscribed Platonic solids are
irrational, but satisfy algebraic equations of lower order. These irrational numbers
are precisely the ones that are the least well approximated by rationals, and orbits
with radii having these ratios are the most robust against each other’s perturbations,
since they are the least affected by resonance effects. Some surprising results about
chaotic dynamics have been discovered recently, but unfortunately their proofs did
not fit within the scope of this book and had to be left out.

In this new edition, I have benefited from many valuable suggestions of col-
leagues who have used the book in their courses. In particular, I am deeply grate-
ful to H. Grosse, H.-R. Griimm, H. Narnhofer, H. Urbantke, and above all



viii Preface to the Second Edition: Classical Dynamical Systems

M. Breitenecker. Once again the quality of the production has benefited from
drawings by R. Bertlmann and J. Ecker and the outstanding word processing of
F. Wagner. Unfortunately, the references to the literature have remained sporadic,
since any reasonably complete list of citations would have overwhelmed the space
allotted.

Vienna, Austria, July 1988 Walter Thirring



Preface to the Second Edition:
Classical Field Theory

In the past decade, the language and methods of modern differential geometry have
been increasingly used in theoretical physics. What seemed extravagant when this
book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact
has strengthened my belief that today students of theoretical physics have to learn
that language—and the sooner the better. After all, they will be the professors
of the twenty-first century, and it would be absurd if they were to teach then
the mathematics of the nineteenth century. Thus, for this new edition I did not
change the mathematical language. Apart from correcting some mistakes, I have
only added a section on gauge theories. In the last decade, it has become evident
that these theories describe fundamental interactions, and on the classical level,
their structure is sufficiently clear to qualify them for the minimum amount of
knowledge required by a theoretician. It is with much regret that I had to refrain
* from incorporating the interesting developments in Kaluza—Klein theories and
in cosmology, but I felt bound to my promise not to burden the students with
theoretical speculations for which there is no experimental evidence.

I am indebted to many people for suggestions concerning this volume. In par-
ticular, P. Aichelburg, H. Rumpf, and H. Urbantke have contributed generously to
corrections and improvements. Finally, I would like to thank Dr. I. Dahl-Jensen
for redoing some of the figures on the computer.

Vienna, Austria, December 1985 Walter Thirring



Preface to the First Edition

This textbook presents mathematical physics in its chronological order. It origi-
nated in a four-semester course [ offered to both mathematicians and physicists,
who were only required to have taken the conventional introductory courses. In
order to be able to cover a suitable amount of advanced material for graduate stu-
dents, it was necessary to make a careful selection of topics. I decided to cover
only those subjects in which one can work from the basic laws to derive physically
relevant results with full mathematical rigor. Models that are not based on realistic
physical laws can at most serve as illustrations of mathematical theorems, and
theories whose predictions are only related to the basic principles through some
uncontrollable approximation have been omitted. The complete course comprises
the following one-semester lecture series:

I. Classical Dynamical Systems
II. Classical Field Theory
IIl. Quantum Mechanics of Atoms and Molecules
IV. Quantum Mechanics of Large Systems

Unfortunately, some important branches of physics, such as the relativistic quan-
tum theory, have not yet matured from the stage of rules for calculations to math-
ematically well-understood disciplines, and are therefore not taken up. The above
selection does not imply any value judgment, but only attempts to be logically and
didactically consistent.

General mathematical knowledge is assumed, at the level of a beginning graduate
student or advanced undergraduate student majoring in physics or mathematics.



Xii Preface to the First Edition

Some terminclogy of the relevant mathematical background is collected in the
Glossary near the beginning of the book. More specialized tools are introduced
as they are needed; I have used examples and counterexamples to try to give
the motivation for each concept and to show just how far each assertion may be
applied. The best and latest mathematical methods to appear on the market have
been used whenever possible. In doing this, many an old and trusted favorite of
the older generation has been forsaken, as I deemed it best not to hand dull and
wormn-out tools down to the next generation. It might perhaps seem extravagant to
use manifolds in a treatment of Newtonian mechanics, but since the language of
manifolds becomes unavoidable in general relativity, I felt that a course that used
them right from the beginning was more unified.

References are cited in the text in square brackets | ] and collected near the end
of the book. A selection of the more recent literature is also to be found there,
although it was not possible to compile a complete bibliography.

I am very grateful to M. Breitenecker, J. Dieudonné, H. Grosse, P. Hertel,
J. Moser, H. Namhofer, and H. Urbantke for valuable suggestions. F. Wagner
and R. Bertlmann have made the production of this book very much easier by their
greatly appreciated aid with the typing, production, and artwork.

Vienna, Austria, February 1977 Walter Thirring



Note About the Translation

In the English translation, we have made several additions and corrections to try to
eliminate obscurities and misleading statements in the German text. The growing
popularity of the mathematical language used here has caused us to update the
Bibliography. We are indebted to A. Pflug and G. Sieg] for a list of misprints in the
original edition. The translator is grateful to the Navajo Nation and to the Institute
for Theoretical Physics of the University of Vienna for hospitality while he worked
on this book.

Atlanta, Georgia, USA Evans M. Harrell I
Vienna, Austria Walter Thirring



Glossary

Logical Symbols

v for every

3 there exist(s)

A there does not exist

I there exists a unique

a=b ifa then b

iff if and only if

Sets

aceA a is an element of A

ad A a is not an element of A

AUB union of A and B

ANB intersection A and B

CA complement of A (Inalargerset B:{a:a € B,a ¢ A})
A\ B {a:ae€ A, a¢ B}

AAB symmetric difference of A and B: (A\ BYU (B \ A)

) empty set

ca universal set

AxXx B Cartesian product of A and B: the set of all pairs (a, b), a € A,

beB



XX Glossary

Important Families of Sets

open sets contains @ and the universal set and some other specified sets,
such that the open sets are closed under union and finite
intersection
closed sets the complements of open sets
measurable contains ¥ and some other specified sets, and closed under
sets complementation and countable intersection
Borel- the smallest family of measurable sets that contains the open
measurable sets
sets
null sets, or the sets whose measure is zero. “Almost everywhere” means
sets of “except on a set of measure zero.”
measure
zero

An equivalence relation is a covering of a set with a nonintersecting family of
subsets. @ ~ b means that @ and b are in the same subset. An equivalence relation
has the following properties: (i) @ ~ a forall a; (ii)a ~ b = b ~ a; (iii)a ~ b,
b~c=a~c.

Numbers
N natural numbers
Z integers
R real numbers
RY (R™) positive (negative) numbers
C complex numbers
sup supremum, or lowest upper bound
inf infimum, or greatest lower bound
1 any open interval
(a, b) the open interval from a to b
[a, b} the closed interval from a to b
(a, b] and half-open intervals from a to b
la, b)

R" R x --- x R This is a vector space with the scalar product

———— e

N times
O s IV X1 XN) = 2 i

Maps (= Mappings, Functions)
f:A—>B forevery a € A an element f(a) € B is specified

f(A) image of A,i.e..if f: A > B,{f(a) € B:a € A}
£ (b) inverse image of b, i.e., {a € A : f(a) = b}
f inverse mapping to f. Warning: (1) it is not necessarily a

function, and (2) distinguish from 1/f when B = R.



'8

f is injective
(one-to-one)

f is surjective
(onto)

f is bijective

Glossary XX1

inverse image of B : Jpep £ 7'(5)
a) # ay = f(a) # f(a)

f(A)=B

f is injective and surjective. Only in this case is f~! a true
function

h X f2 the function defined from A, x A; to By x B, so that
(a1, a2) = (fila), falaz))

fofi f1 composed with f:if fi: A > Band 5, : B — C, then
fro fi: A— Csothata — fo(fi(a))

1 identity map, when A = B; i.e., a — a. Warning: do not
confuse witha — 1 when A = B = R.

fly f restricted to a subset U C A

f |a evaluation of the map f at the point a; i.e., f(a)

fiscontinuous the inverse image of any open set is open

f ismeasurable the inverse image of any measurable set is measurable

supp f support of f: the smallest closed set on whose complement
f=0

Cr the set of r times continuously differentiable functions

Cy the set of C” functions of compact (see below) support

XA characteristic functionof A : y (a)=1...

Topological Concepts

topology any family of open sets, as defined above

compact set
connected set

discrete topology
trivial topology

simply connected set

(open) neighborhood of
acA

(open) neighborhood of
BCA

p is a point of
accumulation
(= cluster point) of B

B

B is dense in.A

a set for which any covering with open sets has a finite
subcovering

a set for which there are no proper subsets that are
both open and closed

the topology for which every set is an open set

the topology for which the only open sets are ¢ and
c9

a set in which every closed path (loop) can be
continuously deformed to a point

any open subset of A containing a. Usually denoted
byUorV

any open subset of A containing B

for any neighborhood U containing p, UNB\{p} # @

closure of B: the smallest closed set containing B
B=A



xxii Glossary

B is nowhere dense in A\ Bisdensein A

A
metric (distance func- amapd : A x A — R such that d(a,a) = 0;
tion) for A d(a,b) = d(b,a) > 0 forb # a; and d(a,c) <

separable space

d(a,b) + db,c) for all a, b, c in A. A metric
induces a topology on A, in which all sets of the
form (b : d(b, a) < n) are open

a space with a countable dense subset

homeomorphism a continuous bijection with a continuous inverse
product topology on the family of open sets of the form U, x U,, where U,
Ay X Ay is open in A; and U is open in A;, and unions of

such sets

Mathematical Conventions

fi

q()

det IM,J]
TrM
8, 8ij

[lvll (in three
dimensions,
v

ds

ds

d"q

1

I

L

aQ

Mat, (R)

O(x)

af/9q;

dq(t)/dt

determinant of the matrix M;;

Z,‘ Mii

1ifi = j, otherwise 0

the totally antisymmetric tensor of degree m, with values +1
transposed matrix: (M‘),-;- =M

Hermitian conjugate matrix: (M™);; = (Mj)*

scalar (inner, dot) product

cross product

gradient of f
curl of f
divergence of f

length of the vector v: |ivj = (3_,_, v2)'/2 = d(0, v)

differential line element
differential surface element
m-dimensional volume element
is perpendicular (orthogonal) to
is parallel to

angle

element of solid angle

the set of real n x n matrices
order of x

The summation convention for repeated indices is understood except where it does
not make sense. For example, L;; x; stands for Yy Liex.



Glossary Xxiti

Groups

GL, group of n x n matrices with nonzero determinant

0, group of n x n matrices M with M M = 1 (unit matrix)

S0, subgroup of 0, with determinant 1

E, Euclidean group

S group of permutations of n elements

U, group of complex n x n matrices M with MM* = 1 (unit
matrix)

Spy group of symplectic n x n matrices

Physical Symbols

m; mass of the ith particle

X; Cartesian coordinates of the ith particle

t=x%/c time

s proper time

qi generalized coordinates

Di generalized momenta

e charge of the ith particle

« gravitational constant

c speed of light

h=h/2nr Planck’s constant divided by 27

Fy electromagnetic field tensor

8ap gravitational metric tensor (relativistic gravitational potential)

E electric field strength

B magnetic field strength in a vacuum

~ is on the order of

> is much greater than



Symbols Defined in the Text

Df
(V,®)

Sn

oM
Oclq)
T,(M)
()
T(M)

T(f)
T, (M)

derivative of f : R” — R™
chart

n-dimensional torus
n-dimensional sphere
boundary of M

mapping of the tangent space into R™

tangent space at the point g
derivative of f at the point ¢
tangent bundle

projection onto a basis
derivativeof f : M, —> M,
set of vector fields

induced mapping on 7.

Lie derivative

natural basis on the tangent space
flow

automorphism of a flow
action

Lagrangian

Hamiltonian

cotangent space

dual basis

differential of a function
space of tensors

(2.1.1)
(2.1.3)
(2.1.7;2)
(2.1.7;2)
(2.1.20)
(2.2.1)
(2.2.4)
(2.2.7)
(22.12)
(2.2.15)
(2.2.17)
(2.2.19)
(2.2.21)
(2225, 1), (2.5.7)
(2.2.26)
(2.3.7)
(2.3.8)
(2.3.16)
(23.17)
(2.3.26)
(2.4.1)
(2.4.2; 1)
(2.4.3; 1)
(2.4.4)



Xxvi Symbols Defined in the Text

®
A
ix
T/ (M)
T (M)
Ep (M)

T*(®)
¢¥

RETTxDOTS
€

U, ¢)

o
iz dp
E (M)
d

N
EOU)
(' (x) [ e(x))
iy

*

)

A

L,

tensor product

wedge (outer, exterior) product
interior product

*-mapping

tensor bundle v
pseudo-Riemannian metric

set of tensor fields

set of p-forms

fiber product

transposed derivative

pull-back, or inverse image of the covariant
tensors

exterior derivative

Lie bracket

canonical forms

Liouville measure

Hamiltonian vector field

bijection associated with w

Poisson brackets

generalized configuration space

Hamiltonian on M,

action-angle variables

Mgller transformations

scattering matrix

differential scattering cross-section

angular momentum

boost

Minkowski space metric

1/4/1 = v?/c? (relativistic dilatation)

electromagnetic 2-form

1-form of the potential

Lorentz transformation

Schwarzschild radius

basis of the p-forms

linear space of the p-forms

exterior differential

restriction of a form

space of m-forms with compact support

scalar product

interior product

isomorphism between E, and E,,_,

codifferential

Laplace-Beltrami operator

Lie derivative

(2.4.5)

(2.4.7)

(2.4.9), (2.4.16)
(2.4.18)
(2.4.25)
(2.427)
(2.4.28)
(2.4.28)

(2.4.34)
(2.4.34)
(2.4.41)

(2.5.1)
(2.5.9; 6)
(3.1.1)
(3.1.2; 3)
(3.1.9)
(3.1.9)
(3.1.11)
(3.2.12)
(3.2.12)
(3.3.14)
(3.4.4)
(3.4.9)
(3.4.15)
(4.1.3)
(4.1.9)
(5.1.2)
(5.1.4;2)
(5.1.10; 1)
(5.1.10; 1)
(5.1.12)
(5.7.1)
(7.2.3)
(7.2.5,2)
(7.2.6)
(7.2.7; 3)
(7.2.9)
(7.2.14)
(7.2.16)
(7.2.17)
(7.2.19)
(7.2.20)
(7.2.23)



e(k)

F(2)
)

Symbols Defined in the Text xxvii

affine connection

affine connection

Heaviside step function
Dirac delta function

Dirac delta form

Green function

electric and magnetic fields
vector potential

gauge function

current

total charge
energy-momentum tensor
total energy-momentum
energy-momentum form of the field
world-line
energy-momentum form of matter
Lagrangian

action

Poynting’s vector

domains of influence

Green function

retarded Green function
retarded Green function (form)
retarded field strength
incoming field strength
outgoing field strength
radiation field

D-function

energy loss per period
specified current

dielectric constant
superpotential

Fresnel’s integral

scalar product

Sections

exterior covariant derivative
covariant derivative
curvature form

curvature in space-time
Christoffel symbol
Riemann-Christoffel tensor
Weyl forms

curvature parameter

rate of convergence

(1.2.25)
(7.2.25)
(7.2.31)
(7.2.31)
(7.2.33)
(7.2.35)
(7.3.1)
(1.3.7)
(7.3.10; 1)
(7.3.12)
(7.3.18;2)
(7.3.20)
(7.3.21)
(7.3.22)
(7.3.25, 2)
(7.3.25; 2)
(8.1.1)
(8.1.1)
(8.1.13)
(8.1.15)
(8.2.5)
(8.2.7)
(82.7)
(8.2.9)
(8.2.15)
(8.2.15)
(8.2.21)
(8.2.22)
(8.4.4; 2)
(9.1.7)
(9.1.19; 3)
(9.1.21; 1)
(9.3.10)
(10.1.3)
(10.1.9)
(10.1.10)
(10.1.15)
(10.1.19)
(10.1.20; 1)
(10.1.36)
(10.1.44; 2)
(10.1.44; 3)
(10.4.42)
(10.6.8)



