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PREFACE

This text is intended for use as an introduction to the subject of electromagnetic
fields at the undergraduate level of an electrical engineering curriculum. As a
prerequisite, we assume that the reader has the standard background in calculus,
differential equations, and elementary physics.

The subject of electromagnetic fields is perhaps the most fundamentally
important topic in electrical engineering. Therefore, the student should be
motivated by the material and its presentation to engage in a serious study of the
topic. Since the quantities of interest are functions of not only time but also
spatial parameters, the material is inherently more difficult for the beginning
student than, for example, electric circuit theory. In order to solve most
electromagnetic fields problems, the student must be able to visualize and
understand the meaning of the governing equations. Consequently, an impor-
tant aspect of the presentation of this material is a clear explanation of the
fundamental principles and concepts. Our intent in writing this text is to make
the subject matter interesting and motivating and to present the important
concepts with a minimum of unnecessary detail so that the reader can
distinguish the “forest from the trees.”

This text grew out of a need for an introductory electromagnetic fields text
which bridges the gap between the existing texts which cover static fields in
considerable detail but do not give sufficient coverage of time-varying fields and
those that cover both topics but with considerably more detail and sophistica-
tion than is required at this level of instruction. We presume that the student has
been introduced to the basic static field concepts such as Coulomb’s law and
Gauss’ law through the standard elementary physics courses. Consequently, the
discussion of static field concepts is minimized so that the more important topics
of time-varying fields and the engineering applications (uniform plane waves,
transmission lines, waveguides, and antennas) can be covered in sufficient depth.



xvi Preface

Chapter 1 provides an introduction and motivational survey. In revising
Chapter 1 we have included more illustrative examples of applications of
electromagnetic field theory. Chapter 2 presents all of the necessary vector
algebra and vector calculus tools and concepts. Much of the material in Chapter
2 is review material, which can be covered rapidly. In this edition we have
included a discussion of generalized, orthogonal coordinate systems in order to
provide a more unified basis for discussion of the specific coordinate systems.
Chapter 3 contains the static electric field concepts (Coulomb’s law, electric
field, Gauss’ law, potential, energy, capacitance, resistance, and mechanical
forces). A section on the concept and calculation of resistance for arbitrary
structures has been added in this second edition. This follows the section on the
calculation of capacitance for arbitrary structures present in the first edition. A
section on power dissipation has also been included in this edition. Chapter 4
presents the static magnetic field concepts (the Biot-Savart law, Ampére’s law,
energy, inductance, mechanical forces, and magnetic circuits). This chapter has
been substantially rewritten to emphasize the duality between the electric and
magnetic fields. Relatively brief discussions of material properties are included
in Chapters 3 and 4. In many institutions, these static field topics are covered to
some degree in the elementary physics courses. In this case, Chapters 3 and 4
may serve as review material.

Chapter 5 begins the discussion of time-varying field concepts by introducing
and discussing Maxwell’s equations, the boundary conditions, Poynting vector,
and the important sinusoidal, steady-state solution technique. This chapter is
essentially unchanged from the first edition. Chapter 6 begins the discussion of
the applications and implications of Maxwell’s equations from an engineering
standpoint. The concept of electromagnetic waves is discussed in considerable
detail so that this fundamental concept will be firmly understood. Reflection and
transmission of uniform plane waves as well as polarization of these waves arc
also discussed. We have added a section on group velocity which was not
present in the first edition. A major addition in this second edition is the
discussion of oblique incidence of uniform plane waves on plane material
boundaries. The topics of plane wave propagation in arbitrary space directions,
Snell’s laws, Brewster angle, and the critical angle have been included along with
the general developments on oblique incidence.

Chapter 7 contains a discussion of wave propagation on transmission lines.
Both transient and sinusoidal, steady-state behavior are discussed. The empha-
sis is on fundamental principles, and the Smith chart and its applications are
discussed in detail in Appendix C. We have included in this second edition a
discussion of the per-unit-length resistance calculation for the standard trans-
mission line structures which was not present in the first edition. Chapter 8
presents a discussion of rectangular waveguides, which, although brief, covers
the essential points. In this second edition, we have added sections on attenua-
tion in waveguides, and cavity resonators. The intent again was to highlight the
essential concepts and keep the discussion brief.

The topic of antennas is covered in Chapter 9 in somewhat more detail than is
customary in a text aimed at this level. The elemental, electric (Hertzian dipole),
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the elemental, magnetic (loop) dipole, and the long, linear dipole are discussed in
a somewhat standard manner as is the topic of linear arrays. Antenna directivity
and gain are also discussed. Coupling between two antennas is considered, and
the important concepts of reciprocity with regard to impedance and pattern for
an antenna in either a transmitting or receiving mode are derived. The Friis
transmission equation is also derived. A section on the effect of reflections from
an imperfect ground has been added to this second edition.

Chapter 10 contains the traditional techniques for solution of static field
problems for which simple, closed-form solutions are not obtainable. Discus-
sions of Laplace’s equation in cylindrical and spherical coordinates are added in
this revised version, and the section on image methods has been expanded.
Solution techniques for Laplace’s and Poisson’s equations, as well as numerical
methods (finite-difference and method of moments) and analog and graphical
methods, are discussed. Ordinarily, in other texts, this chapter is placed after the
material covered in Chapter 4. We have chosen to include this chapter as the last
one in the text so that the reader is led to an early consideration of the important
topics of time-varying fields after a brief review of static field concepts in
Chapters 3 and 4. With this organization, the reader has a proper appreciation
of the hierarchy of importance of the material in each chapter.

Appendix A summarizes various vector identities, vector calculus operations,
and transformations between coordinate systems. Appendix B contains a
discussion of Faraday’s law for moving contours which is unchanged from the
first edition. In Appendix C, the discussion of the Smith chart is essentially the
same as in the first edition. We have, however, added sections on double stub
tuners, quarter-wave transformers, broadband matching and pads and use of the
chart for lossy lines.

Most of the additions to the first edition were suggested by those who have
used the text. We are grateful to those who have provided their comments for
improvement. '

Over half the end-of-chapter problems are new in this edition. Answers to
selected problems are given at the end of the text, as was requested by most of
the users of the first edition.

The text should be suitable for either a one-semester or a two-semester
sequence in electromagnetic fields. In a one-semester course, it would be
appropriate and possible to review Chapter 2 (vectors) and cover Chapters 5, 6,
7,8, and 9, and Appendix C (Smith charts). A two-semester sequence would be a
more leisurely coverage of the entire text. Chapters 2, 3, 4, 10, 5, and possibly a
portion of Chapter 6 may be covered in detail in the first semester, and the
remainder of Chapter 6 and Chapters 7, 8, 9 and Appendixes B and C may be
covered in the second semester.

The question of what is the most appropriate and effective way of presenting
electromagnetic fields at this level is difficult to answer. We have chosen to blend
the more traditional approach of discussing static fields first with the attitude of
minimizing that discussion in order to get to the topic of time-varying fields as
soon as possible. This approach seems to have the pedagogical advantage of
discussing the more easily understood static field concepts first before delving
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into the inherently more difficult time-varying field concepts. In line with the
attitude that it is essential that the reader visualize and understand the basic
concepts in electromagnetic fields in order to begin to master the subject matter,
we have tried to simplify the notation and minimize the mathematical details
where possible. Elective and graduate courses will be able to delve more deeply
into the details once these basic concepts are firmly understood.

The very capable typing of this maunscript and its various modifications by
Mrs. Vickie L. Brann is gratefully acknowledged.

We would also like to thank those individuals who took the time to review
this manuscript: Kenneth A. Connor, Rensselaer Polytechnic Institute; R. J.
Garbacz, Ohio State University; Bhag S. Guru, GMI Engineering and Manage-
ment Institute; P. R. Herczfeld, Drexel University; Richard Kwor, University of
Notre Dame; Michael Steer, North Carolina State University; and Clayborne
D. Taylor, Mississippi State University.

Clayton R. Paul
Syed A. Nasar
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CHAPTER T

Introduction

1.1 Brief Historical Development

The basic concepts of modern electromagnetic field theory have evolved over
many years. In fact, an awareness of magnetism appears to be as old as recorded
history. The discovery of the polarities of lodestone by Pierre de Maricourt
dates to around 1269, and from that time through the early seventeenth century
the progress in the study of magnetism was rather slow.! During the seventeenth
century, however, there was a considerable revival of interest and there were
several notable contributions by several scientists toward understanding mag-
netism. A. Kirchner demonstrated that the two poles of a magnet have equal
strength, and Newton attempted to formulate the law for a bar magnet. But the
correct inverse square law was postulated by John Michell in 1750 and
reconfirmed by Coulomb at a later date. In 1785 Coulomb also demonstrated
the law of electric force between charged bodies.t Coulomb’s inverse square law
(or simply Coulomb’s law) may be said to be the starting point of modern
electromagnetic field theory. Subsequent landmarks in the development of
electromagnetic field theory include the derivations of Laplace’s equation in
1782, Poisson’s equation in 1813, and Gauss’ divergence theorem in the same
year. These developments essentially belong to the general topic of electro-
statics.

We know that motion of charges constitutes electric current. Experiments
with electric current could be performed only after the invention of the battery
by Volta in 1800. Having a source of continuous current available, Oersted, in
1820, was able to demonstrate the production of magnetic fields by electric
currents. Oersted’s discovery prompted others to investigate the relationships

t It is claimed that the inverse square law of electric force was established in 1773 by Cavendish,
who did not publicize his findings.!
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between electric currents and magnetic fields. In 1820, Ampére announced a
discovery relating to forces between electric current-carrying conductors and
magnets and the mutual attraction (repulsion) of two electric currents. These
experiments led to the formulation of Ampére’s law. During 1820, Biot and
Savart repeated Oersted’s experiment to determine a law of force governing the
forces between current-carrying conductors and gave us the Biot-Savart law.
These developments belong to the general topic of magnetostatics.

During the period of Oersted and Ampére, Faraday was also experimenting
or the interaction between current-carrying conductors and magnetic fields, and
hc developed an electric motor in 1821. Furthermore, Faraday’s experiments on
developing induced currents by changing the magnetism (or magnetic field) led
to the law of electromagnetic induction in 1831.1 Faraday also proposed the
concept of magnetic lines of force. Thus, the foundation of all electromagnetic
phenomena was laid. In 1864, Maxwell proposed “A Dynamical Theory of the
Electromagnetic Field” and thus unified the experimental researches of over a
century through a set of equations known as Maxwell’s equations.? These
equations were later verified experimentally by Hertz in 1887. It is generally
accepted that all macroscopic electromagnetic phenomena are governed by
Maxwell’s equations.

In the following chapters we will study the basic laws governing electromag-
netic fields. Before we take up the details of the analyses, we will look briefly at
the range of applications of electromagnetic field theory.

1.2 Some Applications of Electromagnetic Field Theory

It was nentioned previously that Maxwell’s equations govern all macroscopic
electromagnetic phenomena. Therefore, it is not practicable to list here a large
number of applications of electromagnetic field theory. Rather, the general
nature of problems that are best handled by field theory will be pointed out, and
the broad range of applications of electromagnetic field theory will be identified.

The term field is a concept used to describe a distribution of some quantity
throughout a region of space. For instance, the electric field is measurec by the
force on a unit charge of electricity, and the magnetic field is measurea by the
force on a magnetic dipole. (Electric and magnetic fields will be defined precisely
in Chaps. 3 and 4, respectively.) Thus, we notice that fields are three-dimensional
spatial phenomena, and the mathematical formulation of field phenomena is
always in terms of distributed parameters (in contrast to the lumped-parameter
description of electric circuits). We might say that distributed-parameter field
phenomena are given by partial differential equations and that lumped-
parameter circuit behavior is expressed by ordinary differential equations.

+ Joseph Henry of Albany, New York, is said to have made this discovery earlier than Faraday.
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Indeed, Maxwell’s equations are a set of partial differential equations, as we
shall see in Chap. 5. Strictly speaking circuits are approximate analogs for field
relationships, and are used for the sake of convenience. A simple example of this
approximation is shown in Fig. 1.1. Figure 1.1a shows a solid cylinder of length
I, area of cross section A, and made of a conducting material of conductivity o. If
we assume a uniform current-density distribution over the conductor cross
section, its resistance is R = [/ A, and the circuit analog then becomes as shown
in Fig. 1.1b. The Ohm’s law relationship for the solid conductor and its circuit
analog are also shown in Fig. 1.1. As we shall see in later chapters, the other two
common circuit elements, inductance and capacitance, are also approximate
analogs corresponding respectively to magnetic and electric field in a given
region.

From the preceding discussion, it is clear that the formulation in terms of
fields implies an exact description of the electromagnetic phenomenon occurring
in a specified region. There is a danger in using this approach to solve every
problem in electrical engineering. Circuit concepts and other valid approxima-
tions are convenient to use in numerous situations. Electromagnetic theory must
be applied where the approximations leading to the analogs break down. For
instance, the radiation of electromagnetic waves from an antenna can only be
described by Maxwell’s equations. In Fig. 1.1a, if the distribution of the current
is nonuniform over the conductor cross section, as would be the case for an
alternating current of high frequency, the determination of the resistance
involves an application of the field equations. The criteria for the use of the field
equations are: (1) that the problem at hand is a distributed-parameter problem,
(2) that the resulting equations can be solved without unreasonable difficulty,

T

E

FIGURE 1.1
(@ A solid conductor showing the field relationship J = oE, known as Ohm's law. (b) A

circuit analog.



