{mn’l‘m: BERRFEHEITEMNM#ZFR I SAMS

Oy EEgsan s

(Z&EChR « 3 M)

_[%] Stephen G. Kochan #

Programming in C

= \ | B,
N \

|
L '\\ \ i

Z MLl

% POSTS & TELECOM PRESS

il

\

Tunine L ELT RS T ET S

Programming in C

Third Edition

[%] Stephen G. Kochan 3

Z ARt

Z POSTS & TELECOM PRESS

PlSfEg H (CIP) £l

CESRPE: B3I (F) BNE. —IbE: ARBSEBMRE, 2006.5
CF R R EALRLE RSB
ISBN 7-115-14763-9

[.C... 1. #.. . CES— Bir&it— #M— %X V. TP312
R RCA P 5TE CIP BB F (2006) 25 043585 5

HERE

AR LR ACIESHE, BHME TCESRAARYE, BAEANST CORrME B HH fE:
Y. AB@ERHHMCIES, ERTENRFRMEE N FS, fH XA CH B R M T iEMmI
B, oot BRELERHERA DM, MFRTRETIRENCESH/METRECIES E, BTHRES%,
EEERTAE B EREFOEM, XATLIERFORE LR,

TRAREHMLE A%, FHBREBNCESEM,

Bl R R R LR E R 5
CEZEFIT (XXM F3IM
¢ E [3€] Stephen G. Kochan
HIERE BHER
¢ ARBPEHMAIRAT ERWEIKYEF 145

HEg 100061 B R 315@ptpress.com.cn
Rihit http://www.ptpress.com.cn

AL S S S ENRY T B R

TSRS ILERITHSH
¢ JFFA. 800x1000 1/16
Engk: 34.5
F¥. 675 TF 2006 % 5 HE 1 R
EN¥: 1-3000 M 2006 . 5 BALRE 1 KENKI

EERERFILES BT 01-2006-1719 5
ISBN 7-115-14763-9/TP » 5391
EHr: 55.00 7T
IEEREAL: (010)88593802 ENKRBHAL: (010)67129223

N ECHIB L H R AL

POSTS & TELECOM PRESS

51t E b2 B 341
RFPEEFHT

ARHPE HEHER AT EFFSIHENZHEHERFMFEES, HEERNSRBITHRSHE L
b, ElFEEE: TEH. 8F, FUHENBFEHSE, SEKEEEPrentice-Hall, Addison-
Wesley, Wiley, McGraw-Hill, &I#fkZHki#t. Elsevier, IEEE Press. Wrox, SIAMZZ it FHZ

H AR, REFEMNEERFRMNEENHRNE.

®

BRXB

B % UMLAE G REE S8 (& B 2 IRGFRE—CEEHR
ST - $E2hR)) (B hR)
R P &: ObéeDcthruenfffuModzilmg R $ %: Modem Compiler mplementation
and Design with UML, nC
fE & /J\/ﬁ;nh%seﬁs%;g?g%gh 1% Z . Andrew W.Appel, Maia Ginsburg
£ 8 7115140766 B 5 7115137714
E ffr: 55.005¢ E ffr: 59.005¢
HERRSE: 20054118 RS jE] : 2005698
i¢] & ﬁl%?‘nm‘iﬁﬁiiﬁﬁj"(? EE ! % BEERESE (RXER)
ay gy, DRSO s Wl R+ %: Infroduction to Data Mining
o A%Sifh%%ﬁfﬁ?m C £ #: Pang-Ning Tan,Michael
£ Mark Allen Weiss Steinbach,Vipin Kumar
25 R PR B S 7-115-14144-4
5 2 7-115-13984-9/TP-4957 = 4 59.005
E o 49.005 T
RIS . 2005485 HhARAY 8 : 20058128
B % BB (RUR - $B2R) & # UNIXERZE B Rt (SChR -
B B %: AMathematical - i?jm\ i
: P S dvanced Programming in
) Infroduction foiLogic the UNIX Environment
f #: Herbert B.Enderton e . W. Richard Stevens Stephen
B S 7-115-14145-2 A.Rago
& 39.005% # B 7-115-14484
W i i 108 E ffir: 99.007¢
HiARAS] . 20054128 S ERASIE: 2006438
+H % C++ PrimerdhsChl (S844R) &) # o CHREFIRTH R - 3855R)
C++ Primer B B %: C++ Primer,Fourth Edition B #B &: Small C++ How to Program
% Stanley B.Lippman, Josée # #: H.M.Deitel, P.J.Deitel
Lajoie% B 5: 7-115-14151-7
E T ffr: 99.00¢ E ffr: 59.005¢
ik e . 2006537 i RRATIE: 20055128

ERERXURRERAF

Hohik: b SUHTRGE XS DFFJL B 14075 57 SRR 55 #6405 %

www.turingbook.com

i 010-88592340, 88593802 f5EL: 010-88593803

HEZ: 100089
E-mail: contact@turingbook.com

i AL 7Y

Original edition, entitled Programming in C, Third Edition, 0672326663 by Stephen G.
Kochan, published by Pearson Education, Inc, publishing as Sams, Copyright © 2005 by Sams "
Publishing.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording or by any
information storage retrieval system, without permission from Pearson Education, Inc.

China edition published by POSTS & TELECOM PRESS Copyright © 2006.

This edition is manufactured in the People’s Republic of China, and is authorized for sale
only in the People’s Republic of China excluding Hong Kong, Macao and Taiwan.

A A5F iR i Pearson Education Asia Ltd $##4X A REB R HRHMEK HIR ., KSHEH
BHEIEFE, ARUERTRXEREDEERBAE.

B TFHEARAMEEN (Fi. RITEINTEXNEEBERIN) HERT.

5 H HHt A Pearson Education (3FAHH HMEH) BOEPRE, THREES
HHE, :

BB, BRLR.

L 4
To my mother and father
L

Tl

HIJ

HREURE, REEAEEIRCLE20LE/AFET! B, KernighanFRitchieRy
The C Programming Language & FME—HI—ACIESHH. BENRELE T

[820 #2280 4 fLANSI CHRfEHBLR, ABW R THAES: RO EBIHARKRA
Programming in C, ifi#%ANSI CHIIAA5 &k R T Programming in ANSI C, X HS0RE 4
BIERHE R AILRILENR A KA TANSI CRIFBHFERFIJZER ZNH., YNHEE—
& bt oh B £ & ANSI C AL & JEANSI Cik B A AEH T, FrLAB XHIIRE .

H 19894E K% — MRMELLE, ANSI Chrif L 2iTid Lk, B&FT—IR (C99) HIANSI
Chifi RREAM BT ERRE . ARER T X —brfEXCIESHIBEX.

BT WECIMEH I, ABBAFBHEFNNE: —EFHECBRFNAR, 2—EHE
BER T R X R WEE (OOP), WX —EREEARIILHER N RREBIESRETCIEEM,
WIEC++, JavaFNObjective-C,

RAEY B EER—-HEREBOA, BKIREMNRMIEBEIEELHE, b
oA KL RH B IERIZH A) ‘

JEERAFTIREAMA, BREALALEBHEEROEE,

B

BRERNEFBENMREANEZIRPAE THIBAN, 1R Douglas McCormick,
Jim Scharf, Henry Tabickman, Dick Fritz, Steve Levy, Tony IaninnofiKen Brown, Fih=
A £k ¥ HHenry Mulish, fbEMM SEAEE TRRE, HBRWALRITIL.

BERBME B &K Si48Mark RenfrowF1%5 H 494 Dan Knott, HLERABHI X TR
HKaren Annettfif; A 48$§Bradley Jones, Bf5, RERMSamsBRHMIFE SR EABHERMN
AR, REBHAERSHIT—EIIE,

Stephen Kochan
20044E6 A
steve @kochan-wood.com

Contents At a Glance

1 Introduction 1

2 Some Fundamentals 5

3 Compiling and Running Your First Program 11
4

Variables, Data Types, and Arithmetic
Expressions 21

Program Looping 43
Making Decisions 65
Working with Arrays 95
Working with Functions 119
Working with Structures 165
10 Character Strings 195

11 Pointers 235

12 Operations on Bits 279

13 The Preprocessor 299

14 More on Data Types 321

o ® NN W

15 Working with Larger Programs 333

16 Input and Output Operations in C 347
17 Miscellaneous and Advanced Features 373
18 Debugging Programs 389

19 Object-Oriented Programming 411

A C Language Summary 425

B The Standard C Library 467

C Compiling Programs with gcc 493

D Common Programming Mistakes 497

E Resources 501

Index 505

Table of Contents

1 Introduction 1

2 Some Fundamentals 5
Programming 5
Higher-Level Languages 6
Operating Systems 6
Compiling Programs 7
Integrated Development Environments 10
Language Interpreters 10

3 Compiling and Running Your First
Program 11
Compiling Your Program 11
Running Your Program 12
Understanding Your First Program 13
Displaying the Values of Variables 15
Comments 17
Exercises 19

4 Variables, Data Types, and Arithmetic

Expressions 21

Working with Variables 21

Understanding Data Types and Constants 23
The Basic Integer Type int 23
The Floating Number Type float 24
The Extended Precision Type double 25
The Single Character Type char 25
The Boolean Data Type _Bool 26

Type Specifiers: long, long long, short,
unsigned, and signed 28

Working with Arithmetic Expressions 30

Integer Arithmetic and the Unary Minus
Operator 33

The Modulus Operator 35
Integer and Floating-Point Conversions 36

Combining Operations with Assignment: The
Assignment Operators 38
Types _Complex and _Imaginary 39

Exercises 40

Program Looping 43

The for Statement 44
Relational Operators 46
Aligning Output 50
Program Input 51
Nested for Loops 53
for Loop Variants 54

The while Statement 56

The do Statement 60
The break Statement 62
The continue Statement 62

Exercises 63

Making Decisions 65
The if Statement 65
The if-else Construct 69
Compound Relational Tests 72
Nested if Statements 75
The else if Construct 76
The switch Statement 84
Boolean Variables 87
The Conditional Operator 91
Exercises 93

Working with Arrays 95

Defining an Array 96
Using Array Elements as Counters 100
Generating Fibonacci Numbers 103

Using an Array to Generate Prime Numbers
104

Initializing Arrays 106

Character Arrays 108
Base Conversion Using Arrays 109
The const Qualifier 111
Multidimensional Arrays 113

10

Contents

Variable-Length Arrays 115
Exercises 117
Working with Functions 119
Defining a Function 119
Arguments and Local Variables 122
Function Prototype Declaration 124
Automatic Local Variables 124
Returning Function Results 126
Functions Calling Functions Calling... 131
Declaring Return Types and Argument Types
134
Checking Function Arguments 135
Top-Down Programming 137
Functions and Arrays 137
Assignment Operators 142
Sorting Arrays 143
Multidimensional Arrays 146
Global Variables 152
Automatic and Static Variables 156
Recursive Functions 159
Exercises 162
Working with Structures 165
A Structure for Storing the Date 166
Using Structures in Expressions 168
Functions and Structures 171
A Structure for Storing the Time 177
Initializing Structures 180
Compound Literals 181
Arrays of Structures 182
Structures Containing Structures 185

Structures Containing Arrays 187

Structure Variants 190

Exercises 191

Character Strings 195

Arrays of Characters 196

Variable-Length Character Strings 198
Initializing and Displaying Character
Strings 201

Testing Two Character Strings for Equality 204

11

12

Inputting Character Strings 206
Single-Character Input 208
The Null String 213
Escape Characters 216
More on Constant Strings 218
Character Strings, Structures, and Arrays 219
A Better Search Method 222
Character Operations 227~

Exercises 230

Pointers 235
Defining a Pointer Variable 235
Using Pointers in Expressions 239
Working with Pointers and Structures 240
Structures Containing Pointers 243
Linked Lists 244
The Keyword const and Pointers 253
Pointers and Functions 254
Pointers and Arrays 259
A Slight Digression About Program
Optimization 263
Is It an Array or Is It a Pointer? 264
Pointers to Character Strings 266
Constant Character Strings and Pointers 267

The Increment and Decrement Operators

Revisited 268
Operations on Pointers 272
Pointers to Functions 273
Pointers and Memory Addresses 274

Exercises 276

Operations on Bits 279

Bit Operators 280
The Bitwise AND Operator 281
The Bitwise Inclusive-OR Operator 283
The Bitwise Exclusive-OR Operator 284
The Ones Complement Operator 285
The Left Shift Operator 287
The Right Shift Operator 287
A Shift Functdon 288
Rotating Bits 290

Bit Fields 292

13

14

15

Exercises 297

The Preprocessor 299
The #define Statement 299
Program Extendability 303
Program Portability 305
More Advanced Types of Definitions 306
The # Operator 312
The ## Operator 313
The #include Statement 313
System Include Files 316
Conditional Compilation 316

The #ifdef, #endif, #else, and #ifndef
Statements 316

The #if and #elif Preprocessor
Statements 318

The #undef Statement
Exercises 320

319

More on Data Types 321
Enumerated Data Types 321
The typedef Statement 325
Data Type Conversions 327
Sign Extension 329
Argument Conversion 329

Exercises 330

Working with Larger Programs 333
Dividing Your Program into Multiple Files 333

Compiling Multiple Source Files from the
Command Line 334

Communication Between Modules
External Variables 336

Static Versus Extern Variables and
Functions 339

Using Header Files Effectively 341

Other Utilities for Working with Larger
Programs 342

The make Utility 343
The cvs Utlity 344
Unix Utilities: ar, grep, sed, and so on 345

336

16 Input and Output Operations in C 347

17

18

Contents 3

Character I/0: getchar and putchar 348
Formatted I/O: printf and scanf 348
The printf Function 348
The scanf Function 355
Input and Output Operations with Files
Redirecting I/O to a File 359
End of File 361
Special Functions for Working with Files 363
The fopen Function 363
The getc and putc Functions 365
The fclose Function 365
The feof Function 367
The fprintf and fscanf Functions
The fgets and fputs Functions 368
stdin, stdout, and stderr 369
The exit Function 370
Renaming and Removing Files
371

359

368

37

Exercises

Miscellaneous and Advanced Features
Miscellaneous Language Statements 373

The goto Statement 373

The null Statement 374
Working with Unions 375
The Comma Operator 378
Type Qualifiers 378

The register Qualifier 378

The volatile Qualifier 379

The restrict Qualifier 379
Command-Line Arguments 380
Dynamic Memory Allocation 383

The calloc and malloc Functions 384
The sizeof Operator 385
The free Function 387

Debugging Programs 389
Debugging with the Preprocessor 389
Debugging Programs with gdb 395
Working with Variables 398
Source File Display 399
Controlling Program Execution 400
Getting a Stack Trace 405

373

Contents

Calling Functions and Setting Arrays and
Structures 405

Getting Help with gdb Commands 406
Odds and Ends 408

19 Object-Oriented Programming 411

What Is an Object Anyway? 411
Instances and Methods 412
Writing a C Program to Work with Fractions

Defining an Objective-C Class to Work with

413

Fractions 414
Defining a C++ Class to Work with Fractions 419
Defining a C# Class to Work with Fractions 422

A C Language Summary 425

1.0 Digraphs and Identifiers 425
1.1 Digraph Characters 425
1.2 Identifiers 425
2.0 Comments 426
3.0 Constants 427
3.1 Integer Constants 427
3.2 Floating-Point Constants 427
3.3 Character Constants 428
3.4 Character String Constants 429
3.5 Enumeration Constants 430
4.0 Data Types and Declarations 430
4.1 Declarations 430
4.2 Basic Data Types 430
4.3 Derived Data Types 432
4.4 Enumerated Data Types 438
4.5 The typedef Statement 438

4.6 Type Modifiers const, volatile, and
restrict 439

5.0 Expressions 439
5.1 Summary of C Operators 440
5.2 Constant Expressions 442
5.3 Arithmetic Operators 443
5.4 Logical Operators 444
5.5 Relational Operators 444
5.6 Bitwise Operators 445
5.7 Increment and Decrement Operators 445
5.8 Assignment Operators 446

5.9 Conditional Operators 446
5.10 Type Cast Operator 446
5.11 sizeof Operator 447
5.12 Comma Operator 447
5.13 Basic Operations with Arrays
5.14 Basic Operations with Structures
5.15 Basic Operations with Pointers
5.16 Compound Literals 450
5.17 Conversion of Basic Data Types
6.0 Storage Classes and Scope 452
6.1 Functions 452
6.2 Variables 452
7.0 Functions 454
7.1 Function Definition 454
7.2 Function Call 455
7.3 Function Pointers 456
8.0 Statements 456
8.1 Compound Statements 456
8.2 The break Statement 456
8.3 The continue Statement
8.4 The do Statement 457
8.5 The for Statement 457
8.6 The goto Statement 458
8.7 The if Statement 458
8.8 The null Statement 458
459
459
460

457

8.9 The return Statement
8.10 The switch Statement
8.11 The while Statement
460

9.1 Trigraph Sequences 460
9.2 Preprocessor Directives 461
9.3 Predefined Identifiers 466

9.0 The Preprocessor

B The Standard C Library 467
Standard Header Files

467
<stddef.h> 467
<limits.h> 468
<stdbool.h> 469
<float.h> 469
<stdint.h> 469

String Functions 470

447

448
448

451

Memory Functions 472
Character Functions 473
I/0 Functions 473
In-Memory Format Conversion Functions 478
String-to-Number Conversion 479
Dynamic Memory Allocation Functions 481
Math Functions 482
Complex Arithmetic 488
General Utility Functions 490

Compiling Programs with gcc 493
General Command Format 493
Command-Line Options 494

Common Programming Mistakes 497

Resources 501
Answers to Exercises, Errata, etc. 501
The C Programming Language 501

Contents

Books 501
Web Sites 502
Newsgroups 502

C Compilers and Integrated Development
Environments 502

gee 502
MinGW 502
CygWin 502
Visual Studio 503
CodeWarrior 503
Kylix 503
Miscellaneous 503
Object-Oriented Programming 503
The C++ Language 503
The C# Language 503
The Objective-C Language 503
Development Tools 504

Index 505

Introduction

THE C PROGRAMMING LANGUAGE WAS pioneered by Dennis Ritchie at AT&T Bell
Laboratories in the early 1970s. It was not until the late 1970s, however, that this pro-
gramming language began to gain widespread popularity and support. This was because
until that time C compilers were not readily available for commercial use outside of Bell
Laboratories. Initially, C’s growth in popularity was also spurred on in part by the equal,
if not faster, growth in popularity of the Unix operating system. This operating system,
which was also developed at Bell Laboratories, had C as its “standard” programming lan-
guage. In fact, well over 90% of the operating system itself was written in the C lan-
guage!

The enormous success of the IBM PC and its look-alikes soon made MS-DOS the
most popular environment for the C language. As C grew in popularity across different
operating systems, more and more vendors hopped on the bandwagon and started mar-
keting their own C compilers. For the most part, their version of the C language was
based on an appendix found in the first C programming text—The C Programming
Language—by Brian Kernighan and Dennis Ritchie. Unfortunately, this appendix did not
provide a complete and unambiguous definition of C, meaning that vendors were left to
interpret some aspects of the language on their own.

In the early 1980s, a need was seen to standardize the definition of the C language.
The American National Standards Institute (ANSI) is the organization that handles such
things, so in 1983 an ANSI C committee (called X3]J11) was formed to standardize C. In
1989, the committee’s work was ratified, and in 1990, the first official ANSI standard def-
inition of C was published.

Because C is used around the world, the International Standard Organization (ISO)
soon got involved. They adopted the standard, where it was called ISO/IEC 9899:1990.
Since that time, additional changes have been made to the C language. The most recent
standard was adopted in 1999. It is known as ANSI C99, or ISO/IEC 9899:1999. It is
this version of the language upon which this book is based.

C is a “higher-level language,” yet it provides capabilities that enable the user to “get
in close” with the hardware and deal with the computer on a much lower level. This is

Chapter 1 Introduction

because, although C is a general-purpose structured programming language, it was origi-
nally designed with systems programming applications in mind and, as such, provides the
user with an enormous amount of power and flexibility.

This book proposes to teach you how to program in C. It assumes no previous expo-
sure to the language and was designed to appeal to novice and experienced programmers
alike. If you have previous programming experience, you will find that C has a unique
way of doing things that probably differs from other languages you have used.

Every feature of the C language is treated in this text, As each new feature is present-
ed, a small complete program example is usually provided to illustrate the feature. This
reflects the overriding philosophy that has been used in writing this book: to teach by
example. Just as a picture is worth a thousand words, so is a properly chosen program
example. If you have access to a computer facility that supports the C programming lan-
guage, you are strongly encouraged to download and run each program presented in this
book and to compare the results obtained on your system to those shown in the text. By
doing so, not only will you learn the language and its syntax, but you will alse become
familiar with the process of typing in, compiling, and running C programs,

You will find that program readability has been stressed throughout the book, This is
because I strongly believe that programs should be written so that they can be easily
read—either by the author or by somebody else. Through experience and common
sense, you will find that such programs are almost always easier to write, debug, and
modify. Furthermore, developing programs that are readable is a natural result of a true
adherence to a structured programming discipline.

Because this book was written as a tutorial, the material covered in each chapter is
based on previously presented material. Therefore, maximum benefit will be derived
from this book by reading each chapter in succession, and you are highly discouraged
from “skipping around.”You should alo work through the exercises that are presented at
the end of each chapter before proceeding on to the next chapter.

Chapter 2,“Some Fundamentals,” which covers some fundamental terminology about
higher-level programming languages and the process of compiling programs, has been
mcluded to ensure that you understand the language used throughout the remainder of
the text. From Chapter 3, “Compiling and Running Your First Program,” on, you will be
slowly introduced to the C language. By the time Chapter 16, “Input and Qutput
Operations in C,” rolls around, all the essential features of the language will have been
covered. Chapter 16 goes into more depth about /0 operations in C. Chapter 17,
“Miscellaneous and Advanced Features,” includes those features of the language that are
of 2 more advanced or esoteric nature.

Chapter 18, “Debugging Programs,” shows how you can use the C preprocessor to
help debug your programs. It also introduces you to interactive debugging, The popular
debugger gab was chosen to illustrate this debugging technique.

Over the last decade, the progtamming world has been abuzz with the notion of
object-oriented programming, or OOP for short. C is not an QOP language; however,
several other programming languages that are based on C are OOP langnages. Chapter
19, “Object-Oriented Programming,” gives a brief introduction to QOP and some of its

Introduction

terrhinology. It also gives a brief overview of three (OOP languages that are based on C,
namely C++, C#, and Objective-C.

Appendix A, “C Language Summary,” provides a complete summary of the language
and is provided for reference purposes.

Appendix B, “The Standard C Library,” provides a sumunary of many of the standard
library routines that you will find on all systems that support C.

Appendix C,“Compiling Programs with gec,” summarizes many of the commenly
used options when compiling progranis with GNU’s C compiler gec.

In Appendix I, “Common Programming Mistakes,” you'll find a list of common pro-
gramumning mistakes.

Finally, Appendix E, “Resources,” provides a list of resources you can mrn to for more
information about the C language and to further your studies.

Answers to the quizzes at the end of chapters can be found at www. kochan-wood. com.
This book makes no assumptions about & particular computer system or operating
system on which the C language is implemented. The text makes brief mention of how

to compile and execute programs using the popular GNU C compiler gee.

I want to thank the following people for their help in the preparation of various ver-
sions of this text: Douglas McCormick, Jim Scharf, Henry Tabickman, Dick Fritz, Steve
Levy, Tony Taninno, and Ken Brown. I also want to thank Henry Mullish of New York
University for teaching me so much about writing and for getting me started in the
publishing business.

An earlier edition of this book was also dedicated to the memory of Maureen
Connelly, a former production editor at Hayden Book Company, the publishers of the
first edition of this book.

