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Preface

In February of 2007, I converted my “What’s new” web page of research
updates into a blog at terrytao.wordpress.com. This blog has since grown
and evolved to cover a wide variety of mathematical topics, ranging from my
own research updates, to lectures and guest posts by other mathematicians,
to open problems, to class lecture notes, to expository articles at both basic
and advanced levels.

With the encouragement of my blog readers, and also of the AMS, 1
published many of the mathematical articles from the first year (2007) of
the blog as [Ta2008b], which will henceforth be referred to as Structure
and Randomness throughout this book. This gave me the opportunity to
improve and update these articles to a publishable (and citeable) standard,
and also to record some of the substantive feedback I had received on these
articles from the readers of the blog. Given the success of the blog experi-
ment so far, I am now doing the same for the second year (2008) of articles
from the blog. This year, the amount of material is large enough that the
blog will be published in two volumes.

As with Structure and Randomness, each part begins with a collection of
expository articles, ranging in level from completely elementary logic puzzles
to remarks on recent research, which are only loosely related to each other
and to the rest of the book. However, in contrast to the previous book, the
bulk of these volumes is dominated by the lecture notes for two graduate
courses 1 gave during the year. The two courses stemmed from two very
different but fundamental contributions to mathematics by Henri Poincaré,
which explains the title of the book.

This is the first of the two volumes, and it focuses on ergodic theory, com-
binatorics, and number theory. In particular, Chapter 2 contains the lecture

Vil



viil Preface

notes for my course on topological dynamics and ergodic theory, which origi-
nated in part from Poincaré’s pioneering work in chaotic dynamical systems.
Many situations in mathematics, physics, or other sciences can be modeled
by a discrete or continuous dynamical system, which at its most abstract
level is simply a space X, together with a shift 7" : X — X (or family of
shifts) acting on that space, and possibly preserving either the topological or
measure-theoretic structure of that space. At this level of generality, there
are a countless variety of dynamical systems available for study, and it may
seem hopeless to say much of interest without specialising to much more
concrete systems. Nevertheless, there is a remarkable phenomenon that dy-
namical systems can largely be classified into “structured” (or “periodic”)
components, and “random” (or “mixing”) components,! which then can be
used to prove various recurrence theorems that apply to very large classes
of dynamical systems, not the least of which is the Furstenberg multiple re-
currence theorem (Theorem 2.10.3). By means of various correspondence
principles, these recurrence theorems can then be used to prove some deep
theorems in combinatorics and other areas of mathematics, in particular
yielding one of the shortest known proofs of Szemerédi’s theorem (Theorem
2.10.1) that all sets of integers of positive upper density contain arbitrarily
long arithmetic progressions. The road to these recurrence theorems, and
several related topics (e.g. ergodicity, and Ratner’s theorem on the equidis-
tribution of unipotent orbits in homogeneous spaces) will occupy the bulk
of this course. I was able to cover all but the last two sections in a 10-week
course at UCLA, using the exercises provided within the notes to assess the
students (who were generally second or third-year graduate students, having
already taken a course or two in graduate real analysis).

Finally, I close this volume with a third (and largely unrelated) topic
(Chapter 3), namely a series of lectures on recent developments in additive
prime number theory, both by myself and my coauthors, and by others.
These lectures are derived from a lecture I gave at the annual meeting of
the AMS at San Diego in January of 2007, as well as a lecture series I gave
at Penn State University in November 2007.

A remark on notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.

1One also has to consider extensions of systems of one type by another, e.g. mixing extensions
of periodic systems; see Section 2.15 for a precise statement.
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(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

I will however mention a few notational conventions that I will use
throughout. The cardinality of a finite set £ will be denoted |E|. We
will use the asymptotic notation X = O(Y), X < Y, or Y > X to denote
the estimate |X| < CY for some absolute constant C' > 0. In some cases
we will need this constant C' to depend on a parameter (e.g. d), in which
case we shall indicate this dependence by subscripts, e.g. X = Oy4(Y) or
X <4Y. We also sometimes use X ~ Y as a synonym for X < Y < X.

In many situations there will be a large parameter n that goes off to
infinity. When that occurs, we also use the notation o0, _...(X) or simply
o(X) to denote any quantity bounded in magnitude by ¢(n)X, where c(n)
is a function depending only on n that goes to zero as n goes to infinity. If
we need c¢(n) to depend on another parameter, e.g. d, we indicate this by
further subscripts, e.g. 05 —o0.a(X).

We will occasionally use the averagiug notation

J:EXf Z f((l?)

:reX

to denote the average value of a function f : X — C on a non-empty finite
set X.

Acknowledgments

The author is supported by a grant from the MacArthur Foundation, by
NSF grant DMS-0649473, and by the NSF Waterman award.



Contents

Preface vii
A remark on notation viii
Acknowledgments ix

Chapter 1. Expository Articles 1
§1.1. The blue-eyed islanders puzzle
§1.2. Kleiner’s proof of Gromov’s theorem 2
§1.3. The van der Corput lemma, and equidistribution on

nilmanifolds 9
§1.4. The strong law of large numbers 15
§1.5. Tate’s proof of the functional equation 22
§1.6. The divisor bound 31
§1.7. The Lucas-Lehmer test for Mersenne primes 36
§1.8. Finite subsets of groups with no finite models 41
§1.9. Small samples, and the margin of error 47
§1.10. Non-measurable sets via non-standard analysis 56
§1.11. A counterexample to a strong polynomial Freiman-Ruzsa

conjecture 58
§1.12. Some notes on “non-classical” polynomials in finite

characteristic 61
§1.13. Cohomology for dynamical systems 67

Chapter 2. Ergodic Theory 75
§2.1. Overview 75



vi Contents

§2.2. Three categories of dynamical systems 81
§2.3. Minimal dynamical systems, recurrence, and the Stone-Cech
compactification 88
§2.4. Multiple recurrence 98
§2.5. Other topological recurrence results 105
§2.6. Isometric systems and isometric extensions 119
§2.7.  Structural theory of topological dynamical systems 134
§2.8. The mean ergodic theorem 141
§2.9. Ergodicity 152
§2.10. The Furstenberg correspondence principle 163
§2.11. Compact systems 172
§2.12. Weakly mixing systems 181
§2.13. Compact extensions 195
§2.14. Weakly mixing extensions 205
§2.15. The Furstenberg-Zimmer structure theorem and the
Furstenberg recurrence theorem 212
§2.16. A Ratner-type theorem for nilmanifolds 217
§2.17. A Ratner-type theorem for SLs(R) orbits 227
Chapter 3. Lectures in Additive Prime Number Theory 239
§3.1.  Structure and randomness in the prime numbers 239
§3.2. Linear equations in primes 248
§3.3. Small gaps between primes 259
§3.4. Sieving for almost primes and expanders 267
Bibliography 277

Index 291



Chapter 1

Expository Articles

1.1. The blue-eyed islanders puzzle

This is one of my favourite logic puzzles. It has a number of formulations,
but I will use this one:

Problem 1.1.1. There is an island upon which a tribe resides. The tribe
consists of 1000 people, with various eye colours. Yet, their religion forbids
them to know their own eye color, or even to discuss the topic; thus, each
resident can (and does) see the eye colors of all other residents, but has
no way of discovering his or her own (there are no reflective surfaces). If
a tribesperson does discover his or her own eye color, then their religion
compels them to commit ritual suicide at noon the following day in the
village square for all to witness. All the tribespeople are highly logical! and
devout, and they all know that each other is also highly logical and devout
(and they all know that they all know that each other is highly logical and
devout, and so forth).

Of the 1000 islanders, it turns out that 100 of them have blue eyes and
900 of them have brown eyes, although the islanders are not initially aware
of these statistics (each of them can of course only see 999 of the 1000
tribespeople).

One day, a blue-eyed foreigner visits the island and wins the complete
trust of the tribe.

One evening, he addresses the entire tribe to thank them for their hos-
pitality.

1For the purposes of this logic puzzle, “highly logical” means that any conclusion that can be
logically deduced from the information and observations available to an islander, will automatically
be known to that islander.

1



2 1. Expository Articles

However, not knowing the customs, the foreigner makes the mistake
of mentioning eye color in his address, remarking how unusual it is to see
another blue-eyed person like myself in this region of the world.

What effect, if anything, does this fauz pas have on the tribe?

The interesting thing about this puzzle is that there are two quite plau-
sible arguments here, which give opposing conclusions:

Argument 1. The foreigner has no effect, because his comments do not
tell the tribe anything that they do not already know (everyone in the tribe
can already see that there are several blue-eyed people in their tribe). [

Argument 2. 100 days after the address, all the blue eyed people commit
suicide. This is proven as a special case of Proposition 1.1.2 below. O

Proposition 1.1.2. Suppose that the tribe had n blue-eyed people for some
positive integer n. Then n days after the traveller’s address, all n blue-eyed
people commit suicide.

Proof. We induct on n. When n = 1, the single blue-eyed person realizes
that the traveler is referring to him or her, and thus commits suicide on the
next day. Now suppose inductively that n is larger than 1. Each blue-eyed
person will reason as follows: “If I am not blue-eyed, then there will only
be n — 1 blue-eyed people on this island, and so they will all commit suicide
n — 1 days after the traveler’s address. But when n — 1 days pass, none
of the blue-eyed people do so (because at that stage they have no evidence
that they themselves are blue-eyed). After nobody commits suicide on the
(n—1)" day, each of the blue eyed people then realizes that they themselves
must have blue eyes, and will then commit suicide on the n'" day.” O

Which argument is logically valid? Or are the hypotheses of the puzzle
logically impossible to satisfy??

Notes. I will not spoil the solution to this puzzle in this article; but one
can find much discussion on this problem at the comments to the web
page for this puzzle, at terrytao.wordpress.com/2008/02/05. See also
xkcd.com/blue_eyes.html for some further discussion.

1.2. Kleiner’s proof of Gromov’s theorem

In this article, I would like to present the recent simplified proof by Kleiner
[K12007] of the celebrated theorem of Gromov [Gr1981] on groups of poly-
nomial growth.

2Note that this is not the same as the hypotheses being extremely implausible, which of
course they are.
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Let G be an at most countable group generated by a finite set S of
generators, which we can take to be symmetric (i.e., s~ € S whenever
s € S). Then we can form the Cayley graph T', whose vertices are the
elements of GG, with g and gs connected by an edge for every g € G and
s € S. This is a connected regular graph, with a transitive left action of G.
For any vertex x and R > 0, one can define the ball B(z, R) in T to be the
set of all vertices connected to = by a path of length at most R. We say
that G has polynomial growth if we have the bound |B(z, R)| = O(RO()
as R — oo; one can easily show that the left-hand side is independent of z,
and that the polynomial growth property does not depend on the choice of
generating set S.

Examples of finitely generated groups of polynomial growth include
(1) Finite groups;
(2) Abelian groups (e.g. Z%);
(3) Nilpotent groups (a generalisation of (2));
(

4) Virtually nilpotent groups, i.e., those that have a nilpotent sub-
group of finite index (a combination of (1) and (3)).

In [Gr1981], Gromov proved that these are the only examples:

Theorem 1.2.1 (Gromov's theorem). Let G be a finitely generated group
of polynomial growth. Then G s virtually nilpotent.

Gromov'’s original argument used a number of deep tools, including the
Montgomery-Zippin-Yamabe [MoZi1955| structure theory of locally com-
pact groups (related to Hilbert’s fifth problem), as well as various earlier
partial results on groups of polynomial growth. Several proofs have subse-
quently been found. Recently, Kleiner [K12007] obtained a proof which was
significantly more elementary, although it still relies on some non-trivial par-
tial versions of Gromov’s theorem. Specifically, it needs the following result
proven by Wolf [Wo01968| and by Milnor [Mi1968|:

Theorem 1.2.2 (Gromov’s theorem for virtually solvable groups). Let G
be a finitely generated group of polynomial growth which s virtually solvable
(i.e., it has a solvable subgroup of finite index). Then it is virtually nilpotent.

The argument also needs a related result:

Theorem 1.2.3. Let G be a finitely generated amenable’ group which is
linear, thus G C GL,(C) for some n. Then G is virtually solvable.

3In this context, one definition of amenability is that G contains a Folner sequence Fy, Fa, . ..
of finite sets, thus UZ"=l Fn, =G and limp— o0 |gFRAFR|/|Fn| =0 for all g € G.
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This theorem is an immediate consequence of the Tits alternative
[Ti1972], but also has a short elementary proof, due to Shalom [Sh1998].
An easy application of the pigeonhole principle to the sequence |B(z, R)|
for R =1,2,... shows that every group of polynomial growth is amenable.
Thus Theorems 1.2.2 and 1.2.3 already give Gromov'’s theorem for linear
groups.

Other than the use of Theorems 1.2.2 and 1.2.3, Kleiner’s proof of Theo-
rem 1.2.1 is essentially self-contained. The argument also extends to groups
of weakly polynomial growth, which means that |B(z, R)| = O(R°) for
some sequence of radii R going to infinity. (This extension of Gromov’s the-
orem was first established in [vdDrWil984].) But for simplicity we only
discuss the polynomial growth case here.

1.2.1. Reductions. The first few reductions follow the lines of Gromov’s
original argument. The first observation is that it suffices to exhibit an
infinite abelianisation of G, or more specifically to prove:

Proposition 1.2.4 (Existence of infinite abelian representation). Let G be
an infinite finitely generated group of polynomial growth. Then there exists
a subgroup G’ of finite index whose abelianisation G'/|G’,G"] is infinite.

Indeed, if G’ has infinite abelianisation, then one can find a non-trivial
homomorphism « : G’ — Z. The kernel K of this homomorphism is a normal
subgroup of G'. Using the polynomial growth hypothesis, one can show
that K is also finitely generated; furthermore, it is of polynomial growth
of one lower order (i.e., the exponent in the O(R°") bound for |B(z, R)|
is reduced by 1). An induction hypothesis then gives that K is virtually
nilpotent, which easily implies that G’ (and thus G) is virtually solvable.
Gromov’s theorem for infinite G then follows from Theorem 1.2.2. (The
theorem is of course trivial for finite G.)

Remark 1.2.5. The above argument not only shows that G is virtually
solvable, but moreover that G’ is the semidirect product K x,Z of a virtually
nilpotent group K and the integers, which acts on K by some automorphism
¢. Thus one does not actually need the full strength of Theorem 1.2.2 here,
but only the special case of semidirect products of the above form. In fact,
most proofs of Theorem 1.2.2 proceed by reducing to this sort of case anyway.

To prove Proposition 1.2.4, it suffices to prove

Proposition 1.2.6 (Existence of infinite linear representation). Let G be
an infinite finitely generated group of polynomial growth. Then there exists
a finite-dimensional representation p : G — GLp(C) whose image p(G) 1is
infinite.
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Indeed, the image p(G) C GL,(C) is also finitely generated with polyno-
mial growth, and hence, by Theorems 1.2.3 and 1.2.2, is virtually nilpotent
(actually, for this argument we do not need Theorem 1.2.2 and would be
content with virtual solvability). If the abelianisation of p(G) is finite, one
can easily pass to a subgroup G’ of finite index and reduce the (virtual) step
of p(G’) by 1, so one can quickly reduce to the case when the abelianisation
is infinite, at which point Proposition 1.2.4 follows. So all we need to do
now is to prove Proposition 1.2.6.

1.2.2. Harmonic functions on Cayley graphs. Kleiner’s approach to
Proposition 1.2.6 relies on the notion of a (possibly vector-valued) harmonic
function on the Cayley graph I'. This is a function f : G — H taking
values in a Hilbert space H such that f(g) = IT:;’—[ > s flgs) forall g € G.
Formally, harmonic functions are local minimisers of the energy functional

1
=52 V(P

geG
where

IV£(g)? Z 1£(gs) — £ (@)l

seb
though of course with the caveat that E(f) is often infinite. (This property
is also equivalent to a certain graph Laplacian of f vanishing.)

Of course, every constant function is harmonic. But there are other
harmonic functions too: for instance, on Z%, any linear function is harmonic
(regardless of the actual choice of generators). Kleiner’s proof of Proposition
1.2.6 follows by combining the following two results:

Proposition 1.2.7. Let G be an infinite finitely generated group of polyno-
mial growth. Then there exists an (affine-) isometric (left) action of G on
a Hilbert space H with no fized points, and a harmonic map f : G — H
which is G-equivariant (thus f(gh) = gf(h) for all g,h € G). (Note that in
view of equivariance and the absence of fized points, this harmonic map is
necessarily non-constant.)

Proposition 1.2.8. Let G be a finitely generated group of polynomial
growth, and let d > 0. Then the linear space of harmonic functions u :
G — R with growth of order at most d (thus u(g) = O(RY) on B(id, R)) is
finite-dimensional.

Indeed, if f is the vector-valued map given by Proposition 1.2.7, then
from the G-equivariance it is easy to see that f is of polynomial growth
(indeed it is Lipschitz). But the linear projections {f - v : v € H} of f to
scalar-valued harmonic maps lie in a finite-dimensional space, by Proposition
1.2.8. This implies that the range f(G) of f lies in a finite-dimensional space
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V. On the other hand, the obvious action of G on V has no fixed points
(being a restriction of the action of G on H), and so the image of G in
G'L,, (V') must be infinite, and Proposition 1.2.6 follows.

It remains to prove Proposition 1.2.7 and Proposition 1.2.8. Proposition
1.2.7 follows from some more general results of Korevaar-Schoen
[KoSc1997] and Mok [Mo01995], though Kleiner provided an elementary
proof, which we sketch below. Proposition 1.2.8 was initially proven by
Colding and Minicozzi [CoMi1997] (for finitely presented groups, at least)
using Gromov’s theorem; Kleiner’s key new observation was that Proposi-
tion 1.2.8 can be proven directly by an elementary argument based on a
Poincaré inequality.

1.2.3. A non-constant equivariant harmonic function. We now
sketch the proof of Proposition 1.2.6. The first step is to just get the action
on a Hilbert space with no fixed points:

Lemma 1.2.9. Let G be a countably infinite amenable group. Then there
exists an action of G on a Hilbert space H with no fized points.

This is essentially the well-known assertion that countably infinite ame-
nable groups do not obey Property (T), but we can give an explicit proof
as follows. Using amenability, one can construct a nested Falner sequence
Fy C F; C...Cl,Fn= G of finite sets with the property that |(F,—_; -
F,)AF,| < 27"|F,| (say). (In the case of groups of polynomial growth,
one can take F,, = B(id, R,) for some rapidly growing, randomly chosen
sequence of radii R,,.) We then look at H := [?(N;[?(@G)), the Hilbert space
of sequences fi, fa, -+ € [*(G) with Y ”f"||222(G) < 0o. This space has the
obvious unitary action of G, defined as g : (fn(*))nen — (fn(g:))nen. This
action has a fixed point 0, but we can delete this fixed point by considering
instead the affine-isometric action f +— gf + gh — h, where h is the sequence
hii= (Wl F, )neN- This sequence h does not directly lie in H, but observe
that gh — h lies in H for every g. One can then easily show that this action
obeys the conclusions of Lemma 1.2.9.

Another way of asserting that an action of G on H has no fixed point
is to say that the energy functional E : H — R* defined by E(v) :=
I3 sesllsv — v||% is always strictly positive. So Lemma 1.2.9 concludes
that there exists an action of G on a Hilbert space on which E is strictly
positive. It is possible to then conclude that there exists another action of G
on another Hilbert space on which the energy E is not only strictly positive
but actually attains its minimum at some vector v. This observation follows
from more general results of Fisher and Margulis [FiMa2005], but one can
also argue directly as follows. For every 0 < A < 1 and A > 0, there must
exist a vector v which almost minimises E in the sense that E(v') > AE(v)



