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PREFACE

This book is a product of two seminars held in the IBM World Trade Euro-
pean Education Center of Blaricum (Holland) in 1961, the first of which was
dedicated to a general survey of non-numerical applications of computers
whereas the second was more specifically concerned with some aspects of
the theory of formal systems. Professor E. W. Beth, who took part in both
seminars, was kind enough to sponsor the publication of the proceedings
in the “Studies of Logic and Foundations of Mathematics™. Rather than
publishing everything, a choice was made on the basis of relevance to the
subject matter described in the title of this volume. Most authors preferred
moreover to present a revised version of their contributions.

Symbol manipulation plays an important role both in the theory of
formal systems and in computer programming and one would therefore ex-
pect some important relationships to exist between these domains. It may
therefore seem surprising that specialists in the two fields have only recent-
ly become interested in one another’s techniques. This situation is prob-
ably due to an original difference in motivation and to a phaseshift in time.

Electronic computers made their appearance about fifteen years ago,
and have up to now been used essentially to solve problems in numerical
mathematics and to process commercial data, two activities with a rather
well-established methodology. Moreover, although a computer is indeed
a general purpose symbol manipulator, advanced linguistic techniques for
prescribing or describing its behaviour are unnecessary as long as the
structure of the problems does not differ too much from the arithmetical
structure built into the hardware of the machine.

Research in formal logics, on the other hand, received its original
impetus from the foundation problems of mathematics, which originated
at the end of the XIX* century. During the last three decades the emphasis
has skifted from the study of particular formal systems, capable of formal-
izing mathematical disciplines, to the investigation of the fundamental
properties of formal systems in general, such as the existence or non-
existence of decision procedures for certain questions. In these investiga-
tions practical feasibility has not been taken into account and the results
are therefore not directly related to actual computing problems, as was
pointed out by Professor Hao Wang.
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The current interest in formal logics, manifested by certain computer
programmers, is due to a desire to broaden the scope of computer usage
beyond the numerical area. It has become customary to call “non-
numerical” a class of computer applications, typical members of which
are: language translation, information retrieval, game playing, pattern
recognition and theorem proving. In addition to exhibiting a structure
which cannot easily be reduced, by an appropriate coding, to the arithmeti-
" cal structure, most of these applications are not amenable to standard
decision procedures and some are extremely complex. Hence the need for
new efficient algorithms and for “heuristics”, i.e. shortcuts.

Some logicians are similarly interested in going beyond the “asympto-
tic” concept of decidability, which corresponds to a machine with un-
limited storage capacity and computing time. On the basis of experiments
in theorem proving on actual computers they want to assess the relative
efficiencies of various proof procedures and to investigate the practical
impact of classical results on decidability.

The concept of a computing mechanism occurred to the logicians many
years before the advent of the electronic stored program machine, but the
existence of real computers and of corresponding programming techni-
ques has had a considerable influence on present day research in automata
theory.

These are the various aspects of the relationships between computer

programming and the theory of formal systems discussed in the following
pages. We have attempted to group as much as possible articles according
to similarities of interest; it is however clear that often more than one
aspect has been considered by the authors so that our classification re-
mains quite arbitrary.

THE EDITORS
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MECHANICAL MATHEMATICS AND INFERENTIAL ANALYSIS

HAO WANG
Cambridge, Mass.

1. GENERAL SPECULATIONS

If we compare calculating with proving, four differences strike the eye:
(1) Calculations deal with numbers; proofs, with propositions. (2) Rules
of calculation are generally more exact than rules of proof. (3) Procedures
of calculation are usually terminating (decidable, recursive) or can be
made so by fairly well-developed methods of approximation. Procedures
of proof, however, are often nonterminating (undecidable or nonrecursive,
though recursively enumerable), indeed incomplete in the case of number
theory or set theory, and we do not have a clear conception of approximate
methods in theorem-proving. (4) We possess efficient calculating pro-
cedures, while with proofs it frequently happens that even in a decidable
theory, the decision method is not practically feasible. Although short-
cuts are the exception in calculations, they seem to be the rule with proofs
in so far as intuition, insight, experience, and other vague and not easily
imitable principles are applied. Since the proof procedures are so complex
or lengthy, we simply cannot manage unless we somehow discover pecu-
liar connections in each particular case. '

Undoubtedly, it is such differences that have discouraged responsible
scientists from embarking on the enterprise of mechanizing significant
portions of the activity of mathematical research. The writer, however,
feels that the nature and the dimension of the difficulties have been
misrepresented through uncontrolled speculation and exaggerated because
of a lack of appreciation of the combined capabilities of mathematical
logic and calculating machines.

Of the four differences, the first is taken care of either by quoting
Gddel representations of expressions or by recalling the familiar fact
that alphabetic information can be handled on numerical (digital)
machines. The second difference has largely been removed by the achieve-
ments of mathematical logic in formalization during the past eighty years
or so. Item (3) is not a difference that is essential to the task of proving
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theorems by machine. The immediate concern is not so much theo-
retical possibility as practical feasibility. Quite often a particular question
in an undecidable domain is settled more easily than one in a decidable
region, even mechanically. We do not and cannot set out to settle all
questions of a given domain, decidable or not, when, as is usually the
case, the domain includes infinitely many particular questions. In addition,
it is not widely realized how large the decidable subdomains of an
undecidable domain (e.g., the predicate calculus) are. Moreover, even
in an undecidable area, the question of finding a proof for a proposition
known to be a theorem, or formalizing a sketch into a detailed proof,-
is decidable theoretically. The state of affairs arising from the Godel
incompleteness is even less relevant to the sort of work envisaged here.
The purpose here is at most to prove mathematical theorems of the
usual kind, e.g., as exemplified by treatises on number theory, yet not
a single “garden-variety” theorem of number theory has been found
unprovable in the current axiom system of number theory. The concept
of approximate proofs, though undeniably of a kind other than ap-
proximations in numerical calculations, is not incapable of more exact
formulation in terms of, say, sketches of and gradual improvements
toward a correct proof.

The difference (4) is perhaps the most fundamental. It is, however,
easy to exaggerate the degree of complexity which is necessary, partly
because abstract estimates are hardly realistic, partly because so far little
attention has been paid to the question of choosing more efficient alterna-
tive procedures. The problem of introducing intuition and experience
into machines is a bit slippery. Suffice it to say for the moment, however,
that we have not realized that much of our basic strategies in searching
for proofs is mechanizable, because we had little reason to be articulate
on such matters until large, fast machines became available. We are in
fact faced with a challenge to devise methods of buying originality with
plodding, now that we are in possession of servants which are such
persistent plodders. In the more advanced areas of mathematics, we are
not likely to succeed in making the machine imitate the man entirely.
Instead of being discouraged by this, however, one should view it as a
forceful reason for experimenting with mechanical mathematics. The
human inability to command precisely any great mass of details sets an
intrinsic limitation on the kind of thing that is done in mathematics and
the manner in which it is done. The superiority of machines in this
respect indicates that machines, while following the broad outline of
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paths drawn up by people, might yield surprising new results by making
many new turns which man is not accustomed to taking.

The attempt to mechanize, as much as possible, mathematical thinking
opens up a large area of research. In my opinion, the theoretical core
of this area is a new branch of applied logic which may be called inferen-
tial analysis, characterized by an emphasis on the explicitless and practical
feasibility of methods of inference. This discipline enjoys a measure of
autonomy not shared by numerical analysis which, for example, does not
deal with logical operations on the choice and arrangement of numerical
methods. It is believed that the development of mechanical mathematics
will influence pedagogical and research methods in mathematics, as well
as affect certain epistemological questions of a specifically mathematical
coloring.

The governing general principle is: what can be formulated exactly
can be put on a machine, subject to the practical limitations on the
manageable dimension and complexity. Repetitions are a good in-’
dication of the suitability of a mechanical treatment. Thus, for example,
much of the activity of teaching mathematics is tedious and requires
patience. If no interaction between pupil and teacher were necessary,
televisions, or sometimes just gramophones, would be sufficient to re-
place teachers. As it is, these ready-made conveniences are only used
as partial substitutes but, even so, teaching has already begun to enjoy
to a certain extent the advantages of mass production. However, interest-
ing problems of mechanical mathematics arise only when we come to tasks
which call for an active agent to give answers, advices, and criticisms,
the simplest being the correction of exercises and examination papers.
Psychologically, the pupil has many reasons for preferring a patient
machine teacher when the problem is, as in the majority of situations,
a matter of drill rather than inspiration. The result may be that human
teachers will employ mechanical devices as teaching assistants.

In a similar fashion, since in mathematical research there is also a
great deal of mechanizable tedious work, mechanical devices may be
used to aid individual mathematicians. In this connection, lm view of
the fact that specific mathematical discoveries are made essentially once
and for all, there are less of exact repetitions, but more of the problem
of using mechanical devices flexibly by, for example, designing and
combining programs on general purpose computers. In order to use
machines either to aid research or to aid teaching, the results, methods, and
spirit of formalization in mathematical logic are to play an essential role.
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The advance of mechanical mathematics may also affect some of
our concepts in the philosophy of mathematics. We get, not only in
theory, but even in practice, an objective criterion of mathematical
rigor in mechanical terms. The range of feasible mathematical methods
will be extended so that the theoretically feasible and the practically
feasible begin to converge, and we have a more realistic guidance to the
improvement of feasibility. As we understand more fully the range of
mechanical mathematics, we get a clearer view of the relation between
complexity and conceptual difficulty in mathematics, since we would
probably wish to say that mechanizable pieces, even when highly complex,
are conceptually easy. When alternative proofs are fully mechanizable,
we obtain also a quantitative measure of the simplicity of mathematical
proofs, to supplement our vaguer but richer intuitive concept of simpli-
city. With the increasing power to formalize and mechanize, we are
freed from tedious details and can more effectively survey the content
and conceptual core of a mathematical proof.

2. Tue CeNTRAL ROLE OF Locic

In theory all mathematical arguments can be formalized in elementary
logic (quantification theory, predicate calculus). If we add equality and
the quantifiers “for all x” and “for some y” to the propositional con-
nectives “and”, “if”’, “or”, “not™, etc., we obtain the predicate calculus,
in which, as logicians will know, every usual mathematical discipline can
be so formulated that each theorem T in the latter becomes one in the
former when the relevant mathematical axioms A4 are added as premises.
That is to say, if T is the theorem in the mathematical discipline, then
“if A, then T is a theorem of logic. From this fact it is clear that in
order to prove mathematical theorems by machines a major step is to .
deal with theorems of the predicate calculus.

One may question the advantage of thus handling mathematics, on
the ground that the peculiar mathematical content of each individual
branch is lost when the disciplines are thus uniformly incorporated into
the predicate calculus by formalization and abstraction. Now it is in-
deed true that we must add special methods for each special mathematical
discipline. An adequate treatment of the predicate calculus is, however,
of dominant importance, and for each discipline the basic additional
special methods required are fairly uniform. For number theory, the
essential new feature is largely concentrated in mathematical induction
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as a method of proof and of definition; for set theory, in the axiom of
comprehension, i.e., the axiom specifying all the conditions which de-
fine sets. So there is the problem of choosing the formula to make in-
duction on, or of choosing the condition for defining a set. While it
seems doubtful that there is any uniform efficient mechanical method
for making such selections, there are often quite feasible partial methods.
For example, for making such selections in number theory the obvious
uninspired method of trying the desired conclusion of one or another
of its clauses as the induction formula should suffice in many cases.
It would seem that, once a feasible way of doing logic is given, fairly
simple additional methods-could carry us quite some way into special
mathematical disciplines.

Since most of us learned Euclid and number theory without worrying
about the predicate calculus, it might seem that the natural course is to
bypass logic and go directly to mathematics. But in fact such an approach
is ill-advised, so long as the aim is to prove more and harder theorems
rather than merely to re-enact the history of mathematical thinking. What
is natural for people need not be natural for the machine. If logic is not
treated in an explicit and systematic way, constant subsequent additions
of ad hoc devices keep slowing our progress toward interesting theorems,
while multiplying the sources of possible confusion. In general, a vast
machinery specifically designed to obtain a few easy theorems is wasteful ;
resulis obtained from whatever approaches should be measured against
the generality and economy of the machinery used. Foundations, further-
more, should be scaled to large future superstructures. It is our conviction
that to treat logic only by the way would score very poorly by both

3. SoME PosSIBLE DIRECTIONS FOR FURTHER EXPLORATION

Results so far are too rudimentary to provide us with any decisive
corclusions as to the dimension of the long-range effects of the pursuit
of mechanical mathematics. Nevertheless, I shall venture a few comments
drawn from my own restricted experience. (a) I have examined the
theoretically undecidable domain of the predicate calculus and managed
to make an IBM 704 prove all theorems (over 350) of Principia mathe-
matica in this domain in less than 9 minutes; this suggests that we .
usually do not use the full power of strong mathematical methods and
should not be prevented from trying to handle an area on account of
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pessimistic abstract estimates of the more difficult cases in the region.
(b) Care in the theoretical design of the procedures is essential and a
certain amount of sophistication in mathematical logic is indispensable,
because most existing methods are not immediately applicable on
machines. (¢) In particular, one often has to reformulate available
methods or even invent fundamentally new ones; sometimes theoretically
insignificant improvements could increase the speed or reduce the
necessary storage by several orders of magnitude, for example, a device to
try out certain “preferred” substitutions first. (d) Long-range planning and
efforts to make results cumulative are necessary; ad hoc measures and
desire for quick sensation should be avoided because otherwise the limit of
diminishing return will be reached too soon; the correct course would in-
crease reward per unit of work more and more quickly with greater and
greater efforts. (¢) While more can be done with larger machines, the
design and choice of methods is, at least at the present stage, more
crucial because we are far from having made full use of an IBM 704 or
7090 yet. (f) Distrust luck and do not, for example, use obscure methods
with the hope that something wonderful might happen since we do not
know what will happen; the chances of undesirable consequences are
much bigger.

At the present stage, mechanical mathematics seems to be one of
the areas in information processing which promise the highest reward for
each unit of labor. Only accidental circumstances such as the lack of
alliance of potential contributors in administration, programming, and
logic have so far sabotaged more rapid developments. The laziest solu-
tion of this practical difficulty is for one to attack problems in isola-
tion and hope that the pieces will miraculously fit together in due course.
This is not the most satisfactory solution but perhaps the most feasible,
given all the facts of competition, sales exaggeration, desire for liberty
and independence. There are at least three groups of preliminary work
necessary for genuine advances in the long run: a good common (idealized
programming) language for crystallization, communication, and accumu-
lation of results; a decent library of subroutines for simple algebraic and
logical manipulations of symbols, as well as for simple basic proof and
decision procedures; and a fairly sophisticated logical analysis of a
number of specific mathematical proofs with a view to bringing out the
details which have to be taken care of in order to thoroughly formalize
and mechanize them.

It is of course not excluded that one would often run into blind
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alleys. But I am confident major wastes can be avoided through careful
planning and alert flexibility. With these provisos in mind, I now proceed
to list a few possible directions which, in my opinion, are worthy of at
least some preliminary exploration.

That proof procedures for elementary logic can be mechanized is
familiar. In practice, however, were we slavishly to follow these proce-
dures without further refinements, we should encounter a prohibitively
expansive element. It is desirable to study underlying properties of such
expansions in order to increase efficiency. In this way we are led to a
closer study of reduction procedures and of decision procedures for
special domains, as well as of proof procedures of more complex sorts.
Such deeper considerations of elementary logic also provide us with a
systematic approach to axiomatic theories viewed as applied predicate
calculus. The insights thus obtained can complement our direct treatment
of specific mathematical disciplines.

For the sake of a more concrete goal to guide the choice of theoretical
questions, we may set ourselves the aim of programming machines to
formalize and “discover” proofs in quantifierfree number theory and
axiomatic set theory. These areas are chosen both because they are so
central and because it seems desirable to isolate the two basically difficult
mathematical concepts: functions and quantifiers. It is possible that the
quantifier-free theory of positive integers, including arbitrary simple
recursive definitions, can be handled mechanically with relative ease, and
yield fairly interesting results. It is clear from works in the literature that
this restricted domain of number theory is rather rich in content. It goes
beyond logic in an essential way because of the availability of (quantifier-
free) mathematical induction. On the other hand, in axiomatic set theory,
the explicit use of functions can be postponed for quite a long time.
Moreover, here certain general concepts often prove difficult; perhaps
machines will more quickly excel in areas where peaple’s intuitions are
not strong. A case in point would be Quine’s axiomatic system “New
Foundations,” which was obtained by relaxing certain syntactical
restrictions of the theory of types.

While the ulterior aim is to use machines to aid mathematical research
with the assistance of logic, machines can also be used to aid our theoret-
ical research in logic at the present stage. Computers can be put to good
use in the quantity production of concrete examples, which we constantly
need as a means of clarifying our concepts and so expediting general
theoretical results.
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Already in the limited experience in the mechanizing of logical pro-
cedures, the machine outputs have from time to time brought out fea-
tures of the procedures which one had not thought out clearly in advance.
Such experiences have sufficed to persuade us that we would do well to
experiment with computing machines even if it were only for purposes of
theoretical logic.

Some other possible directions are: (1) Experiment with redoing
school and college mathematics by machines; instruct a machine to com-
pete with the average student by using its patience to compensate its lack
of intuition; partial decision procedures in algebra, trigonometry, analytic
geometry, the calculus; prove theorems in elementary geometry and alge-
bra with extensive use of methods dealing with the underlying logic. (2)
Try to combine numerical and inferential methods so that principles can
be introduced for the machine to choose particular methods to apply ac-
cording to the nature of the given problems; this aims at delegating to
the machine as much as possible of the work which now requires a mathe-
matical analyst. (R.W. Hamming is much interested in work along this
direction.) (3) In fields like algebraic topology where often definitions
are long but proofs are short, it is not unlikely that mechanized logical
methods will prove to be of practical use in helping to sort out logical
consequences of new concepts. (4) Fairly simple mathematical researches
involving combinatorial considerations such as questions of completeness,
independence, deducibility in the various systems of the propositional
calculus can presumably be helped radically by a few suitably devised
machine programs. (5) Use this type of work as data to guide us in the
design of more realistic idealized programming languages.

With regard to the formulation of programming languages, it seems
desirable not to pursue the task in isolation and then look for applications
afterwards. One must not let the initial investment in a programming
language control the choice of problems to be programmed, but frequent
revisions of a fixed language require a prohibitive amount of energy and
work which can easily prevent one from meeting new demands with an
open mind. '

A good compromise between rigidity and complete lack of organi-
zation would seem to be the isolation of necessary devices such as the
designing of MACRO instructions at every stage, as is called for by
specific but typical occasions. In this way, a body of quite well-or-
ganized data would gradually emerge as more programs are written.
Attention to the accumulation of good MACRO instructions also brings
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into the somewhat routine task of programming a theoretically more in-
teresting element of formulating exactly concepts which are intuitively
familiar.

4. CASE STUDIES AND STGCK-OF-TRADE SYSTEMS

To analyze in detail specific mathematical proofs is clearly a useful
preliminary step toward the mechanization of types of arguments.
One might attempt to work out a few examples of such case studies drawn
from number theory, geometry, and axiomatic set theory.

In number theory, one might compare quantifier and free variable
proofs of the infinitude of primes and of the fundamental theorem of
arithmetic, puiting emphasis on recursive functions and mathematical in-
duction. In geometry and axiomatic set theory, one might consider mildly
difficult theorems which are proved with quantifiers but without func-
tions. In each case, two types of problems can be conveniently separated: .
deriving very elementary properties such as the commutativity of addition
from the basic axioms on the one hand, and organizing such elementary

properties to obtain a basis for further derivations on the other. For
the human being, the first type of problem is rather artificial and contra-
intuitive. For example, the very early theorems in elementary geometry
are more abstruse than the simple exercises about parallels, triangles,
etc. A good organization of elementary properties plus an exact formula-
tion of familiar methods of trying to find a proof would presumably
yield in each discipline something similar to the principles obtained
from what is often cailed the “heuristic approach™. It is here proposed
that such organizations be called stock-of-trade systems. However,
despite terminological disputes, everybody probably agrees as to roughly
what sort of thing is to be done, and the more relevant question is

' how good a result one gets. It is with regard to this last point that a
patient study of special cases with ample use also of the stocks in trade
of mathematical logic appears indispensible. For instance, even a
formalization of Euclid’s proof of the infinitude of primes contains
a few surprises, and there are quite a number of theoretically interesting
questions connected with the problem of proving the irrationality of ]/2
with no appeal to quantifiers.

We consider here only an example in axiomatic set theory derived
from a paper of Hintikka [13].

If a theorem is proved in a system, even one with only a finite set
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of axioms, it would seem that one major problem is to select the axioms
needed for the proof. Ii stands to reason to expect that it would be
casier for the machine to begin with the selected axioms. In so doing,
we may lose some alternative proof which uses other axioms but that
is something which we do not have to worry about yet. Moreover, it
appears easier to select and prove intermediate lemmas and break up the
whole proof into parts. In both cases, if we do not have the selection
to begin with, it is not easy to decide whether it is advantageous to
take all to begin with, or to add routines to select. In the long run,
one would expect to use the latter alternative. But when the methods of
selecting subproblems and branching out are as cumbersome as some
existing crude attempts appear to be, it is not necessarily more eficient to
use the selection alternative.

The example to be considered is of special interest because it lies
in an area which has not been developed nearly as much as old sub-
jects such as number theory. Consequently, we can draw very little from
a cumulative intuition, and our advantages over machines are not great.
Moreover, this area has been pursued with a considerable emphasis on
formal arguments.

Let Hxy and #AzGxyz be short for:

Hz(z#x N z5%y A Fzy \ Fy2).

(1) u#v.

(2) y #a = (Fya= Hay).

(3) y #b > (Fyb=""Hby).
WDy#c>EFype=@=aVy=D>b).
() y#d> (Fyd=y=o).

The assertion is that the conjunction of (1)-(5) is contradictory.
More exactly, this says that the following formula is a theorem of the
predicate calculus.

(D) | TAvAaHbA AV yV ZAwH x

{ustv
A Dy#a > ((Fya A Gayw) vV (T1Fya A ~|Gayz))]
A Dy #b > ((Fyb A "1Gbyz) v (T|Fyb A Gbyx))]
ANDy#c> Fye=(y=aV y=»5)]
AND#d> (Fyd=y=oc)]}

If the system does not include =, then we have to treat @ = b as
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an abbreviation for
‘ Vx(Fxa = Fxb),
and add the axiom:
a=>b > Vy(Fay = Fby).

This incidentally illustrates the fact that for mechanical mathematics
it is in practice desirable to include = to begin with. In that case, the
formula is in one of the familiar decidable cases since it contains only
two consecutive @’s (for validity). In terms of satisfiability, the part
without the initial | has no model and can be decided by the AV H
satisfiability case (see [23]).

On the whole, it seems easier to make machines do some of the for-
malizing work which logicians sometimes have to do. This may be
viewed as an application of the principle “Charity begins at home.”
Some malicious soul might use this as evidence for his favorite view
that logic is trivial, and he will be wrong for too many reasons which
it is tiresome to elaborate.

In general, what is needed for mechanization is not just axiomatic
systems with emphasis on economy and elegance but rather “stock-of-
trade systems” and formalizations which are exact and yet remain as close
to good common expositions as possible.

5. SoME THEORETICAL DIFFICULTIES

In order to mechanize proof procedures of the predicate calculus, it
seems natural to use Herbrand’s Theorem. This has been suggested and
carried out to varying degrees of completion by different people (see
[21], [22], [10], [16], [6]). The crucial part contains the generation from
a given formula of a sequence of propositional or Boolean conditions,
and the testing of them. It is clear, both by theoretical estimates and
from results obtained so far, that (i) doing the expansion and the test-
ing both by a brute force approach is not feasible; (ii) even greatly
speeding up the testing part is not adequate to dealing with fairly in-
teresting cases because often we have to generate a large number of
Boolean conditions.

Hence, a central theoretical problem is to find ways of selecting only
useful terms from each sequence of Boolean conditions. This problem
has been explored in a preliminary manner in [22] and [23]. One element
is to develop decision procedures for subdomains of the predicate calculus.
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Another element is to use miniscope forms instead of prenex forms. A
third element is to develop semidecision procedures whose range of appli-
cation we do not know exactly in advance ([23], p. 30).

The decision procedures appear not to include the formulas which
are of the most interest to us. More specifically, the decision proce-
dures mostly deal with formulas in the prenex form, and when wederive a
theorem from a few axioms, even though the theorem and the axioms are
separately of simple forms, putting the implication (of the theorem by
the axioms) in a prenex form quickly gets us outside the decidable sub-
domains. This suggests that we should try to extend the decision proce-
dures to truth functions of formulas in the prenex form. Property C in
Herbrand’s dissertation [11] (see below) seems relevant to this question.

The semidecision procedure of [23] is not developed far enough in
that the conditions under which we are to terminate the procedure are
not specified explicitly. For example, if we encounter a periodic situation
(a torus), we can naturally stop; but since the initial columns occupy
a special place, we permit also cases while the initial columns and the
others have two periods which can be fitted together. Closer examination
is necessary in order to lay down broader stopping conditions.

The miniscope form defined in [22] is different from the one developed
in Herbrand’s dissertation because it permits the breaking up of a -
quantifier into several. While this permits more extensive reductions,
it makes an elegant general treatment difficult. Hence, it scems desirable
to return to Herbrand’s treatment which is again connected intimately
with his Property C and Property B.

Both for these reasons and for the additional reason that Herbrand’s
~ dissertation contains a wealth of relevant material which has been
largely overlooked hitherto in the literature, we shall reproduce here
in part lecture notes given at Oxford in the Michaelmas term of 1960
on Herbrand’s dissertation, especially on the Properties B and C. His
Property A also appears interesting and has been revived in Ackermann’s
book ([1], p. 93), but will not be discussed here because we do not
understand fully its implications for mechanization.

6. HERBRAND’S DISSERTATION
6.1. Herbrand’s System H. The primitive logical constants are s Vs,

(+9) (or V¥), (—v) (or @Av), with >, A, = defined in the usual manner.
To avoid confusion, we shall use PsqsTs. .., Fx,Gxy,... as atomic



MECHANICAL MATHEMATICS AND INFERENTIAL ANALYSIS 13

formulas and X,YXx,... as arbitrary formulas which may or may not be
atomic. By a “tautology”” we shall mean a formula that is always true
accordirg to the customary interpretations of truth-functional (Boolean)
connectives, abstracting from an analysis of parts which contain quanti-
fiers.

The system H contains six rules ([11], pp. 31-32).

RT. Rule of tautology. Every quantifier-free tautology is a theorem.
(For example, p = p, although not VxFx > VxFx, falls under
this.)

RI. Rules of inversion. Given a theorem X of H, we get another theorem
of H if we replace within X a part which is of one of the following

forms by its dual:
Y Y
RE) ¢ Fv)y vy

(En@v VvV 2) (£W¥vV Z
Z not containing v.
RU. Rule of universal generalization. Xxx - + yXyy (“~” for infer).
RE. Rule of existential generalization. Xxx - —yXxy.
RC. Rule of contraction. X vV X — X.

RD. Rule of detachment (cut, modus ponens). X, X > ¥ » Y.
The difference between RU and RE can be brought out by:

x=x - +yy=y)
x=x > —yx=y)
xX=2x 7> +yx=y).
The first important result is a direct proof of the following ([11], p. 36).

6.2. THEOREM 1. Every tautology is a theorem of H; in other words, if we
substitute quantifier expressions for parts in RT, we again get theorems of H.

621.XV ..V X-> X

6.3. Positive and Negative Parts. It is familiar that every formula can be
brought into a prenex normal form with a matrix in the conjunctive (or
disjunctive) normal form:

). (L)X Ve
such that X is in, say, a conjunctive normal form.



