SELECTIONS FROM
MODERN
ABSTRACT ALGEBRA

000000000000000000000

RICHARD V. ANDREE
The University of Oklahoma

CONSTABLE AND COMPANY LTD
10 ORANGE STREET, LONDON, W. C. 2



Copyright © 1958 by Richard V. Andree
Library of Congress Catalog Card Number: 58-6799

20416-0118
Printed in the United States of America



SELECTIONS FROM
MODERN ABSTRACT ALGEBRA



Jo —“ph

ir -1
ezn, sln 1

who has the acumen to help when help is needed

and has the sagacity to preserve silence when help is of no avail.



PREFACE

A modern text on abstract algebra tends to become a ten-volume
series. This brief volume is not designed to replace such a series, but rather
whet the student’s appetite for the series, to help him decide which portions
of the series are most suitable for him to take, and to help bridge the
possible gap between freshman preparation and the abstract thinking
required in higher mathematics. Students enjoy the work—enthusiasm
runs high. The more advanced courses now contain a larger percentage of
engineers, physicists, and chemists than ever before. Applications from
these fields, as well as from psychology and social science, are indicated in
this volume, and the student is provided with an opportunity to explore
those regions nearest his own interests.

It is currently fashionable to require “a certain amount of mathe-
matical maturity’”’ as a prerequisite for advanced mathematics courses.
This assumption is not made in this text. Indeed, one important purpose
of this text is to develop the “mathematical maturity” which many authors
require. ,

In accord with the author’s conviction that students should be en-
couraged to use the mathematical library, there are suggestions for further
reading from other texts and from the American Mathematical Monthly.
A sincere effort has been made to suggest articles which are both palatable
and authoritative.

Abstract algebra now occupies about the same relative position to
mathematics in general as mathematics does to engineering and the
physical sciences. In addition to being a fascinating discipline in its own
right, abstract algebra provides the vocabulary and many of the general
techniques used in the larger body of knowledge. It therefore seems quite
appropriate to introduce abstract algebra early. A mathematics major at
the University of Oklahoma usually takes this course in his sophomore
year, concurrently with calculus. Engineering and science majors often
fit it into their junior or senior year. The text is suitable for two, three, or
four semester-hours of work, depending upon student preparation and
the selection of material to be presented. Chapter 3 (Boolean Algebra)
can be studied independently of the rest of the text (but not conversely).
However, it has been found more effective if preceded by Sections 1-1 to
1-6. The approach to Boolean algebra via switching circuits has wide
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viii PREFACE

appeal to students and illustrates how closely mathematical theory can
parallel physical reality.

In a short course, optional ™) sections may be omitted or used as
project material. Likewise Chapters 6 and 7 may be covered rapidly or
omitted entirely if the student is familiar with their contents.

Although the author personally likes the vector space approach to
matrices, it has been avoided here for two reasons. First, it seems unfair
to spoil the elegance of the vector space approach for the student who later
takes a course in matric theory, and, second, experience shows that the
first introduction to matrices is easier if a matrix is considered as an
entity—as an element of a matric aigebra.

Chapter 9, which contains more advanced work on matrices, can be
taken directly after Chapter 5 if the student is already familiar with
determinant theory (Chapter 7), but the author’s experience suggests that
a better rounded course is obtained if Chapter 8 (Fields, Rings, and Ideals)
is studied before Chapter 9. In a short course, it may be well to omit
Chapter 9 entirely. If this is done, you may still wish to discuss Section
9-7, “What Mathematics to Take Next,” with your students.

One marked difference between this book and certain other recent
texts is that it selects interesting and important ideas from various parts
of modern abstract algebra rather than being mostly devoted to the theory
of matrices. Matric theory is vital, but it is only one facet of modern
abstract algebra. For many students this book may well provide their
maiden voyage into the abstract thinking which is the heart of mathe-
matics. Hence, special care has been taken in the development of basic
concepts such as equivalence relations and their corresponding equivalence
classes.

Every student deserves the thrill of making mathematical discoveries
of his own, and then of proving or disproving his conjectures. If these
discoveries happen already to be known to others, this in no way need
detract from his accomplishment—it may merely mean that the others
were born sooner.

This text contains many indications of where and how abstract algebra
is applied in the world of today, but this is not the reason students study
it. They study Selections from Modern Abstract Algebra because it is
interesting and fun.

The author will welcome an opportunity to correspond with you
concerning the use of this text. It is his sincere hope that you and your
students will enjoy Selections from Modern Abstract Algebra.
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the advantages of an undergraduate course containing Boolean algebra,
and introductions to the theories of groups and matrices. The demand
for the course increased and, as it was offered more frequently, its revision
became an almost continuous process. Colleagues at various institutions
used portions of the notes in their classes and offered helpful suggestions,
Among those who used the notes are: J. C. Brixey ( University of Oklahoma),
Emil Grosswald (University of Pennsylvania), V. O. McBrien ( Holy
Cross), C. O. Oakley (Haverford College), G. E. Schweigert (University
of Pennsylvania), O. T. Shannon (Arkansas A, M and N College), and
R. J. Swords (Holy Cross). In addition to this, portions of these notes
were used at graduate summer institutes for high-school mathematics
teachers at the University of Oklahoma (Norman), and at Montana State
College (Bozeman). Professor E. Grosswald used them for a similar group
at the University of Pennsylvania. Chapter 3 on Boolean algebra was
duplicated separately by Professor F. E. McFarlin for use by the Depart-
ment of Electrical Engineering at Oklahoma State University (Stillwater),
and the University of Pennsylvania (Philadelphia). Mr. E. L. Walters
(Wm. Penn High School, York, Pennsylvania) used them for enrichment,
material with a group of advanced high-school students.

Many friends read and made constructive suggestions on the notes;
among them were: Bess E. Allen (Wayne University), J. H. Barrett
(University of Utah), B. H. Bissinger (Lebanon Valley College), R. B.
Crouch (New Mexico College of A. and M. Arts), J. C. Eaves (University
of Kentueky), C. L. Farrar (University of Oklahoma), R. A. Good (Uni-
versity of Maryland), D. W. Hall (Harpur College), R. W. House (Penn-
sylvania State University), M. Gweneth Humphreys (Randolph-Macon
Women’s College), C. F. Koehler (Loyola College), Violet H. Larney
(New York State College for Teachers), D. R. Lintvedt (Upsala College),
C. C. MacDuffee (University of Wisconsin), J. E. Maxfield (Naval Ord-
nance Test Station), Margaret W. Maxfield (Naval Ordnance Test Station),
B. E. Meserve (New Jersey State Teachers College), A. L. Mullikin
(University of Oklahoma), D. A. Norton (University of California),
R. L. San Soucie (Sylvania Electric), Augusta L. Schurrer (Iowa State
Teacher’s College), W. R. Utz (University of Missouri), R. J. Wisner
(Haverford College), and J. L. Zemmer, Jr. (University of Missouri).

The most important contribution was certainly that of the author’s
wife, Josephine Peet Andree who combines a sound mathematical prepara-
tion with the rare qualities of patience, pedigogical judgment, and under-
standing.

Important contributions were also made, sometimes under duress,
by the several hundred students who used this text in its various duplicated
forms, and by the excellent editorship of Professor B. W. Jones (University
of Colorado).

Galley proof was read by Professor Walter Stuermann (University
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of Tulsa), Professor D. J. Lewis (Notre Dame), Mrs. R. V. Andree, and
Mrs. R. A. Andree in addition to the author. Each merits sincere thanks,
both from the author and from the reader.

R.V.A. January, 1958
Norman, Oklahoma,
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NUMBER THEORY
& PROOF

1-1 Introduction

The infegers consist of the ‘“‘counting numbers” or natural whole
numbers 1, 2, 3, 4, --- (positive integers), their negatives —1, —2, —3,
—4, —5, --- (negative integers), and zero 0. In later chapters, when
rational numbers, real numbers, or complex numbers are used, it will be
assumed that you know the meanings of these terms. Briefly: A rational
number is a quotient of two integers a/b with b = 0.1 A real number
is a number which represents a distance or its negative. A complex
number is an ordered pair of real numbers, (a, b) or equivalently, a number
of the form a + bi, where a and barerealand ° = —1. A more com-
plete discussion of the real number system is presented in the book What
18 Mathematics? by Courant & Robbins (Oxford).

The complex numbers contain all the real numbers, rational numbers,
and integers as subsets. The real numbers contain all the rational numbers
and the integers as subsets (but not all the complex numbers). The rational
numbers contain all the integers as a subset (but not all the real nor
complex numbers). The integers do not contain all of any of the other
sets. This entire paragraph may be expressed in one line using the symbol
“C” to mean ‘‘contained in” or “form a subset of”:

Integers C Rationals C Reals C Complex Numbers

It may be of interest to note that the properties of the rational numbers,
real numbers, and even of the complex numbers can be derived from those
of the integers by using logical reasoning. L. Kronecker (1823-1891,
German) is reputed to have said, ‘““God gave us the integers, all else is
the work of man.”

{The symbol * <" is read ‘‘not equal to.”
1
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1-2 The Modulo 7 System

This section introduces a new arithmetic. To remind you that this
is a new system, the congruence sign, =, will be used in place of the
usual =, equal sign. This system has only seven numbers in it:

0,1, 2 3, 4, 5, 6. It is called the modulo 7, or “mod 7,”” system.

The rules for addition in the mod 7 system are the same as those for
ordinary addition except that, if the sum is larger than 6, the sum is divided by
7, the quotient discarded, and the remainder is used in place of the ordinary
sum. Thus, 14+ 3 =4 (mod7) and 2+ 3 = 5 (mod 7); but
5+ 4 = 2 (mod 7), since when 9 is divided by 7 the remainder is 2.
Also, 6 + 5 = 4 (mod 7), since the remainder 4 is obtained when 11 is
divided by 7. In a similar fashion: 5 4+ 2 = 0 (mod 7),
4+14+3+5=6(mod7),and 44+0+2+346=1(mod?7.)

The rules for multiplication in the mod 7 system are also like those of
ordinary multiplication except that, if the product is larger than 6, the
product is divided by 7 and the remainder is used in place of the ordinary
product. Thus: 2 X 2 = 4 (mod 7), but § X 2 = 3 (mod 7), since
if 10 is divided by 7, a remainder of 3 results. Also, 6 X 3 = 4 (mod 7),
since, when 18 is divided by 7, the remainder is 4. In a similar fashion,
4X3=5(mod7), 5X6=2(mod?7), and
2 X 3X4X5 =1 (mod?7), the remainder when 120 is divided by 7.
Practice until you can do sums and products easily in the mod 7 system.
Briefly: a = b (mod 7) means a = b + 7k for some integer k. (Why?)

There are no negative numbers in the mod 7 system. None are needed.
The ordinary negative number —2 is the solution of the ordinary equation
z 4+ 2 = 0. Inthemod 7 system, the number 5 is a solution of the equation
42 =0 (mod7), since (54 2) hastheremainder 0 when divided by 7.
In other words: 5, in the mod 7 system, plays a role similar to that of —
in the ordinary system. In the mod 7 system, the number 6 plays a role
similar to —1 in the ordinary numbers, since 6 + 1 = 0 (mod 7) and
—14+1=

There are no fractions in the mod 7 system and none are needed.
The ordinary fraction 5/3 is the solution of the equation 3z = 5. In
the mod 7 system, the equation 3z = 5 (mod 7) has the solution
# = 4 (mod 7). (Try it and see.) The mod 7 equation 5r = 2 (mod 7)
has = = 6 (mod 7) as solution, while 4z = 6 (mod 7) has the solution
z = 5 (mod 7).

The equation 52° 4+ z° + 52 + 2 = 0 (mod 7) may be shown to have

= 3 (mod 7) as a solution by direct substitutions. (Try it.) Can you
ﬁnd two other solutions?

To reiterate, there are only seven numbers in the entire mod 7 system.
There are no negative numbers and no fractions, yet equations can be
solved. Best of all, since there are only seven numbers, all the solutions
of a given equation can be found by merely substituting each of the seven
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numbers, in turn, for z to see which, if any, of them satisfy the equation.

The mod 7 system is a finite set of numbers, whereas the integers,
rational numbers, and real numbers discussed above are each infinite sets.

A word of warning: There exist equations, such as 2’ = 6 (mod 7),
which have no solution at all. This is not particularly surprising. The
ordinary equation 2z = —1 has no solution in the set of real numbers.
In this book, the word “solve’”’ will mean “find all possible solutions or
prove that none exist.”

The mod 7 system is introduced here to provide laboratory material
for your algebraic experiments in Chapter 1. Modular systems are studied
in more detail in Chapter 2.

Problem Set 1-2

1. Add: 4+3+64+5+ 2+ 4 (mod 7).
2.Add: 14+2+3+4+ 5+ 6 (mod 7).
3. Solve: 3z = 5 (mod 7).

4. Solve: 6x — 5 = 3 (mod 7).

5. Solve: 297x 4 6 = 0 (mod 7). Although 297 does mot occur in
the mod 7 system, 297z still has meaning, since 297z represents the
sumof z4z2z 4+ --- + x. This problem emphasizes the need for dis-

297 terms
tinguishing between the set from which the unknowns of the equation
are taken and the set from which the coefficients of the equation are

taken.
6. Solve: z° = 4 (mod 7).
7. Solve: 2° = 2 (mod 7).
8. Solve: z* = 3 (mod 7).
9. Solve: z* = 6 (mod 7).

10. Solve: z° = 5 (mod 7).

11. (a) Make a table listing the seven numbers in the mod 7 system.
Next to each number z, place its square, z°; cube, z*; fourth power,
r*; fifth power, z°; sixth power, z°; seventh power, x"; and eighth
power, z%; all mod 7. '
(b) Compute, using the table of part (a), the values (5)™° (mod 7),
and (3)'" (mod 7).
(¢) Will z* = 5 (mod 7) have a solution?
(d) For what values of b will z°® = b (mod 7) have solutions?

12. Solve: 4z” + 3z + 4 = 0 (mod 7). Notice that in the mod 7 system
the solutions are not complex.

13. Construct addition and multiplication tables for the mod 7 system.
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14.

15.

16.

17.

18.

19.

20.

21.

NUMBER THEORY & PROOF -3

If the symbol = is to be an equals (or equivalence) relation, it must
satisfy the following postulates:

1. Reflexive: a = a (mod 7).

2. Symmetric: If a = b (mod 7), then b =a (mod 7).

3. Transitive: If o = b (mod 7) and b = ¢ (mod 7), then

a = ¢ (mod 7).

Use the definition “a = b (mod 7) means @ = b + 7k, for some
integer k”’ to show that the mod 7 system does satisfy these require-
ments. [HINT: Given a = b (mod 7), to prove that b =a (mod 7).
This means that, if one assumes that there exists a k, such that
a = b + 7k, then one may deduce that b = a + 7(—k), and hence
that b = @ (mod 7). (Why?)]
Show from the definition of @ = b (mod 7) that, if b = 2 (mod 7)
and ¢ =5 (mod?7), then b+c=2+5=0(mod7), and that
bXc=2X5=3(mod7). [mNT:Since b =2+ k-7 and
¢ =5+ j7, then
b+ec= Q2+ kD + G+ =@€+5 + (k+ 77 Also,
bXe= (24 k) X B+ =2X5+ (2 + 5k + 7ik)7.]
The days of the week can be thought of as forming a mod 7 system
in which the names of the days are replaced by integers mod 7. Starting
with Sunday <> 0, Monday < 1, --- , Saturday <> 6, solve the
following problem. If Christmas, the 359th day of the year, falls on
Sunday, on what day does July 4, the 185th day, fall? On what day
does September 1, the 244th day, fall?

How many different congruences (equations) of the form
Az = B (mod 7) with A $ 0 are there?

Does the relation ~ (is similar to) satisfy the reflexive, symmetric,
and transitive postulates given in Problem 14, if the elements

(a, b, ¢, --+) are triangles? [miNT: Replace “="" by “~" and see.]
Does the relation # satisfy the three postulates of Problem 14,
if the elements a, b, ¢ are integers?

Which of the postulates of Problem 14 are satisfied if “=""is replaced
by | (divides)?

Find a relationship, other than those mentioned in the text, which
satisfies the three postulates of Problem 14. [minT: Try “Is a brother
or half brother of,” “Is a descendant of,”’ “Has the same parents as,”
“Tg the same color (or age) as,” “Has long blond hair like,” and other
similar relationships. Does it make a difference whether the relation
is defined over the set of all people or merely the set of all men?]

1-3 The Modulo 6 System

say

Tt is reasonable and prudent to inquire whether other positive integers,
6, also yield a modular system similar to the mod 7 system. Certainly
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it is feasible to define addition and multiplication mod 6 just as we did
mod 7. T . ;

a=b (mdd 6) ﬁxeans a = b + 6k for some integer k.

The modulo 6 system contains six numbers, 0, 1, 2, 3, 4, 5. There are
no negative numbers, for none are needed. (Why?) There are no fractions.
If an equation has solutions, they can be found by direct substitution,
since there are only six numbers in the mod 6 system. There are, however,
important differences between the mod 6 system and either the real
number system or the mod 7 system. In the real number system (and
also in the mod 7 system, as you will prove in Chapter 2), a product is
equal to zero if, and only if, at least one of its factors is zero, i.e.,

if either 4 =0 or B=0, then A-B = 0 and conversely
if A-B =0, theneither 4 =0 or B =0 (or both).

This important property is basic in the solution of equations.

In the mod 6 system, the “if”’ part—‘‘If either A = 0 or B = 0,
then A-B = 0”—is still satisfied; but the “only if”’ part—“If A-B = 0,
then either A = 0 or B = 0”—does not hold. A single counterexample
is sufficient to show this. (Why?) Take 4 = 4 and B = 3, neither
of which is equivalent to 0 modulo 6. However, 4-3 = 12 = 0 (mod 6).

An important difference between the mod 7 system and the mod 6
system is that, in the mod 7 system (as in the real numbers), the congruence
(equation) Ar = B (mod 7), with A # 0, always has a solution.
(You can prove this now by examining the 42 possible cases. In Chapter 2,
the problem is solved more easily.) In the mod 6 system, there are linear
equations such as 4z = 5 (mod 6) and 2r = 3 (mod 6), which have
no solution at all. (Try them and see.)

The proof that a polynomial equation has no more solutions than its
degree uses the fact that a product of two factors is zero if, and only if,
at least one of the factors is zero. Since the mod 6 system does not have
this property, it is possible that an equation mod 6 may have more solutions
than its degree. Indeed, this proves to be the case. Both z = 2 (mod 6)
and z = 5 (mod 6) are solutions of 2z = 4 (mod 6) while

42’ = 4 (mod 6) has z = 1,2,4,5 as solutions. However,
52" = 4 (mod 6) has no solution. It is interesting to note that, while
42 = 4 (mod 6) has four solutions, z° = 1 (mod 6), obtained by

dividing the previous equation by 4, has only two solutions.

Apparently these modular systems need closer examination before
general conclusions can be drawn. Before doing so, let us investigate
certain properties of ordinary integers and consider some remarks on

the nature of proofs. Modular systems in general are considered in Chapter
2.
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Problem Set 1-3

1. Add 4+3+6+ 5+ 2+ 4 (mod 6).

2,Add 1 +2+4+ 3+ 4+ 5+ 6 (mod 6).

3. Solve: 3z = 5 (mod 6).

4. Solve: 6z — 5 = 3 (mod 6).

5, Solve: 297x + 6 = 0 (mod 6). Although 297 does nof occur in
the mod 6 system, 297z still has meaning, since 297z represents the
sumof z+a+ --- + =z This problem emphasizes the need for

297 terms
distinguishing between the set from which the unknowns of the equa-
tion are taken and the set from which the coefficients of the equation
are taken.

6. Solve: z° = 4 (mod 6).

7. Solve: 2% = 2 (mod 6).

8. Solve: 2 = 3 (mod 6).

9. Solve: z* = 6 (mod 6).

10. Solve: z° = 5 (mod 6).

13.
14.

15.

16.
]7.

Solve: 4z = 3 (mod 6).

. Solve: 2x = 6 (mod 6).

Solve: 4z = 6 (mod 6).

(a) Make a table listing the six numbers in the mod 6 system. Next
to each number z, place its square, z*; cube, z°; fourth power, z*;
fifth power, 2°; sixth power, z2°; seventh power, z’; and eighth power, z°%
all mod 6.

(b) Compute, using the table of part (a), the values (5)**° and (3)"
will have in the mod 6 system.

(¢) Will z* = 5 (mod 6) have a solution?

(d) For what values of b will z° = b (mod 6) have solutions?

Solve: 4x® + 3z + 4 = 0 (mod 6). Notice that in the mod 6 system
the solutions are nof complex or imaginary numbers.

Construct addition and multiplication tables for the mod 6 system.

If the symbol = is to be an equals (or equivalence) relation, it must
satisfy the following postulates:

1. Reflexive: a = a (mod 6).

2. Symmetric: If a = b (mod 6); then b = a (mod 6).

3. Transitive:If a = b (mod 6) and b = ¢ (mod 6), then
a = ¢ (mod 6).
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Use the definition “a@ = b (mod 6) means a = b + 6k for some
integer &k’ to show that the mod 6 system does satisfy these require-

ments.
18. Show that,if b = 2 (mod 6) and ¢ = 5 (mod 6), then
b+e=2+5=1(mod6), and b X ¢ =2 X 5 = 4 (mod 6).

[miNT: Since b = 2 + 6k and ¢ = 5 + 6j, then
b+ec=(2+6k + (5+6j) =2+ 5) + (k+ /6. Also,
b Xec (2+6k)><(5+6j)=2X5+(2j+5k+6jk)6.]

19. Discover three different congruences of the form Az = B (mod 6)
with A # 0 which have no solution. Do not use examples from the
text.

Discover two different congruences of the form Az = B (mod 6)
with A 3 0 which have more than one solution. Do not use examples
from the text.

21. Make up a congruence of the form Az = B (mod 6), with A 5% 0,
which has exactly one solution. Prove that only one solution exists
by actually substituting the six possible values.

It

20

1-4 Integral Domains

An integral domain is defined to be a set of elements a, b, ¢, - - - having
two operations, + and X, and an equals relation, which satisfies the
following postulates. The integers serve as one example of a set which
satisfies these postulates; there are other examples. In each postulate it
is assumed that a, b, ¢ are elements of the integral domain.

1. Closure: For each pair a, b of elements of the integral domain, a + b
and a X b are also elements of the integral domain and are unique.

2. Commutative Laws: For each pair a, b of elements of the domain,
a+b=b+a and a Xb=1> X a.

3. Associative Laws: For each set of three elements a, b, c,
a+b+c)=(a+b)+c and a X (b X¢) =(a Xb) Xe.

4. Additive Identity (Zero): There exists an element z such that, for every
element b,b+2=24+b=1"b and b Xz =2 X b = z (In the
case of integers, z = zero.)

5. Multiplicative Identity (Unity): There exists an element u such that,
for every element b, b X u = u X b = b. (In the case of integers,
u = 1.)

tIn addition to the postulates given in Problem 17, Set 1-3, an equals relation
must also be well defined with respect to the given operations; that is, @ = b must
implya 4+ ¢ =b-+candac = b-c.



