F. THOMSON LEIGHTON

\
INTRODUCTION TO

PARALLEL ALGORITHMS
AND ARCHITECTURES:

ARRAYS - TREES - HYPERCUBES
(2)

At
L X

‘y" 4 f ~LF A | P \\\

SSHER M " S
X APRS 3
AL B | Ny 49\//5‘\"':‘?.4: X]
= SN P)
NS TS \
>, ~ K . A
S S
“ N TR 3 3K :

MORGAN KAUFMANN PUBLISHERS
SANMATEO, CALIFORNIA

266

1)1.241

1.242

1.243

*1.244

1.245

1.246

1.247

.248

1.249

1.250

Section 1.10 Problems

the techniques that were used\fo solve_iBroblemf 1.237, 1.238,
and 1.239.)

Can any off-line permutation routing problem on a VN x vN
array be solved in 2v/N + o(v/N) steps using queues of size at
most 47

Show how to solve any off-line permutation routing problem on
an NV; x Ny x --- X N, array in

2(N1+N2+"'+Nr)_F<l?<}E‘{Ni}_(zr_l) ey

steps using queues of size 1.

Show that if each node starts with one packet, and if up to m
packets can have the same destination, then the basic greedy al-
gorithm can take a maximum of ©@(min(N, mv/N)) steps.

Show that the result of Problem 1.243 also holds for the random-
ized routing algorithm of Subsection 1.7.3 in terms of expected
running time.

Show that the result of Problem 1.243 also holds for the sorting-
based routing algorithms described in Subsection 1.7.4.

Show that any packet-routing algorithm can be forced to use
Q(vmN) steps for an N-packet m-to-one routing problem on a
VN x /N array.

Design a constant queue size packet-routing algorithm that solves
any N-packet m-to-one priblem in O(v/mN) steps on a vVN x VN
array.

Show that if we first route every packet to its correct column, and
then to its correct destination, then we can avoid deadlock in the
wormhole model of routing.

Show that if every packet consists of b flits, then the basic greedy
algorithm solves any one-to-one routing problem in O(byv/N) steps

ona VN x VN array.

Extend Theorem 1.14 to hold for wormhole routing of packets
with b flits each if the arrival rate is less than ﬁ The bounds
on delay and queue size can be larger by a factor of b.

Improve the result of Problem 1.250 to handle arrival rates up to
4/ (5VN).

Can the result of Problem 1.250 be improved to allow constant
queue size?

Extend the result of Problem 1.250 to work for a torus.

1.254
(R*)1.255
(R)1.256

*1.257

**1.258

Section 1.10 Problems 267

Design a protocol for avoiding deadlock on a torus with bounded
queue size.

Determine tight constant factors for the bound in Problem 1.249.
Determine tight constant factors for the problem of routing b-flit
packets on a ring. How well does the greedy algorithm do in the
worst case?

Assume that an N-edge directed weighted linear chain is stored
in a VN x v'N mesh so that each processor initially contains one
weighted edge specified by (i,S5(i), W(i)) where (3,S(3)) is the
edge and W (i) is its weight. Let T(i) be the sum of the weights
of the edges leading up to and including (i,S(¢)). Show how to
comptte T(i) for all ¢ < N in O(v/Nlog N) steps. (Hint: First
compute the sum of the weights on all subchains of length 2, then
on all subchains of length 4, then on all subchains of length 8, and
so forth. Overall, you may need to use O(log V) packet routing
problems.)

Improve the algorithm for Problem 1.257 so that it runs in O(\/N)
steps.

Problems based on Section 1.8.

1.259

1.260

1.261

1.262

Show that the simple 2-phase local update algorithm for labelling
components of an image described in Subsection 1.8.1 runs in
O(\/_N) steps if every component is vertically and horizontally
convex. (A component is said to be vertically convez if the inter-
section of the component with each column forms a single interval.
The component is horizontally convez if the intersection of the
component with each row forms a single interval. For example,
components C, D, and E of Figure 1-102 are vertically and hor-
izontally convex, but component A is not vertically convex, and
component B is not horizontally convex.)

Does the result of Problem 1.259 still hold if the components are
all horizontally convex or vertically convex, but not both?

Show how to modify Levialdi’s algorithm to label components in
the model where diagonally adjacent pixels are not considered to
be contiguous. (Hint: Represent each pixel with a 3 x 3 array of
pixels in such a way that the original algorithm can be applied.)

Show how to modify Levialdi’s algorithm to count the number of
connected components in O(v/N) word steps using only O(log N)
bits of memory per processor.

268

*1.263

*1.264

*1.265

*1.266

1.267

1.268

(R)1.269

1.270

(R)1.271

1.272

*1.273

Section 1.10 Problems

Improve the result of Problem 1.262 to run in O(V'N) bit steps.
(How much memory do you need per processor?)

Show how to modify Levialdi’s algorithm so that only O(log N)
bits of memory are needed per processor, and so that the algorithm
still runs in O(v/N log N) bit steps. (Hint: Remember the history
of the shrinking phase at steps VN, VN, IVN, LyN, ...,
2v/N. In order to perform the expansion phase within one of
the intervals [(2 — 279N, (2 - 2‘i_1)\/ﬁ], rerun the algorithm
recursively within the interval.)

Determine a good constant ¢ for which the recursive component-
labelling algorithm described in Subsection 1.8.1 runs in cVN
word steps. (Hint: You don’t really need to use the general rout-
ing and sorting algorithms described in Sections 1.6 and 1.7 for
this algorithm.)

Show how to modify the recursive component-labelling algorithm
so that it runs in O(v/N) bit steps. (Hint: See the hint for Prob-
lem 1.265.)

Show that at most vV sin #++v/N cos #+1 unit-width bands inter-
sect a VN x VN pixel array when computing a Hough transform
at angle 6.

Show how to compute a Hough transform for angles larger than
T

Is the O(v/N)-step algorithm for computing a Hough transform
for VN angles of a VN x v/'N image work efficient up to constant
factors?

Given a VN x+v/N image, show how to compute the farthest object
from every pixel in O(v/N) steps on a VN x V'N array.

Given a collection of N points specified by coordinate pairs, show
how to compute all nearest neighbors in O(v/N) steps on a VN x
v'N array. (Hint: Use sorting and divide-and-conquer.)

Given a collection of N points p; = (z1,¥1)s ---s Pv = (TN, YUN)
for which z; < 2 < -+ < zy, show that if p; is the kth point
in the upper hull, then p; is the (k + 1)st point in the upper hull
if 7 > 1 is the smallest value for which 6,; is maximized. (As in
Subsection 1.8.4, 8;; denotes the angle of the line from p; to p;
with respect to the negative vertical axis.)

Show how to compute the convex hull of N arbitrary points in

O(VN) steps on a VN x VN array. (Hint: Use sorting and

*1.274

Section 1.10 Problems 269

divide-and-conquer.)
Show how to compute the convex hull of every connected compo-
nent of a VN x VN image in O(v/N) steps on a VN x v/N array

of processors. (Hint: Use the result of Problem 1.273.)

Problems based on Section 1.9.

1.275
*1.276
(R)1.277
1.278
(R)1.279
*1.280
(R)1.281
1.282
*1.283
1.284
1.285

1.286

(R)1.287

*1.288

*1.289

Show that an N; x N, X -+ x N, array has a bisection of size
NiN;--- N,/ max ;<. {N;} if max;<;<,.{N;} is even.

Show that any bisection of an N; x N, x --- x N, array contains
at least N1 N, -+ N,/ max;<;<.{N;} edges.

What is the bisection width of an N; x N, x --- x N, array when
ma)qs,;s,-{Ni} 1s odd?

Show that the bisection width of an r-dimensional N-sided array
is close to but larger than N7~ ! if N is odd.

What is the bisection width of an r-dimensional N-sided array
when [V is odd?

Show that the bisection width of an r-dimensional N-sided torus
is 2N™1 if N is even.

What is the bisection width of an r-dimensional N-sided torus if
N is odd?

Show that an r-dimensional N-sided torus can be simulated by an
r-dimensional N-sided array with a slowdown factor of 2.

How long does it take to multiply N x N matrices on an r-
dimensional array? How many processors are needed?

Show how to multiply two N x N matrices in 2log N steps on an
N3-node hypercube.

Pipeline the algorithm from Problem 1.284 to multlply log N pairs
of matrices in O(log N) steps.

Show how to multiply two N x N matrices in O(log N) steps on

an -node hypercube.

log N
Can a nonsingular N x N matrix be inverted in O(N3/%) steps on
a three-dimensional N%4-sided array?

Show that the three-dimensional array sorting algorithm described
in Subsection 1.9.3 is similar to the Columnsort algorithm of Prob-
lem 1.187 in which r = N%/% and s = N1/3,

Show how to sort N items in O(N'/") steps on an r-dimensional
N'/"_sided array for any constant r > 3.

270

1.290

1.201

*1.292

*%1.293

1.294

1.295

1.296

1.297

1.298

1.299

*1.300

¥%1.301

*1.302

Section 1.10 Problems

Show that any algorithm for sorting N items into zyz-order on
a three-dimensional N1/3-sided array must take at least 5N/3 —
o(N'/3) steps.

Generalize the lower bound in Problem 1.290 for r-dimensional
arrays.

Describe an algorithm for sorting IV items on a three-dimensional
N'/3.sided array that takes at most 5N'/3 + o(N/3) steps.
Generalize the upper bound in Problem 1.292 for r-dimensional
arrays.

Consider a three-dimensional array where the items in each zz-
plane are sorted into zz-order, and then the items in each yz-plane
are sorted into zy-order. Show that every item is within one of
the correct zy-plane for an overall zyz-order.

Show how to solve any many-to-one routing problem in O(N/3)
steps on an N'/3 x N1/3 x N'/3 array if combining is allowed.
Show that the greedy algorithim (i.e., Phases 24 of the algorithm
in Subsection 1.9.4) can take Q(N?/3) steps to solve a worst-case
one-to-one routing problem on an N'/3 x N3 x N'/3 array if the
packets are not rearranged ahead of time.

Show that the greedy algorithm never uses more than O(N?/3)
steps for a one-to-one routing problem on an N3 x N1/3 x N1/3
array.

How do the results of Problems 1.296 and 1.297 generalize for r-
dimensional N'/"-sided arrays? (Be sure to consider the parity of
r.)

Generalize the routing algorithm described in Subsection 1.9.4 to
run in T +r(N'/"—1) steps on an r-dimensional N'/"-sided array,
where T is the time needed to sort on an r-dimensional N'/"-sided
array.

Show that the time needed to route on any network is never more
than a constant factor times the time needed to sort on the net-
work. (Hint: Find a way of generating dummy packets for des-
tinations that do not receive an ordinary packet, and then route
the packets by sorting.)

Generalize the average case analysis of Subsection 1.7.2 to work
for three-dimensional arrays.

Design a randomized algorithm for routing on an N1/% x N1/3 x
N'/3 array that does not require sorting.

(R)1.303

1.304

1.305

1.306

1.307

*1.308

1.309

*1.310
1.311

Section 1.10 Problems 271

Is there a deterministic (3N'/3 + o(N'/3))-step algorithm for rout-
ing on an N3 x N1/3 x N1/3 array that uses O(1)-size queues?
Give two good reasons why an N-node two-dimensional array can-
not simulate an N-node three-dimensional array with constant
slowdown.

Given a problem of size M that can be solved in T steps on an
M-node, s-dimensional M'/*-sided array, how large must M be
(in terms of N) for us to be able to solve the problem on an N-
node, r-dimensional N'/"-sided array in O(TM/N) steps? (You
may assume that the simulation of high-dimensional arrays on
low-dimensional arrays described in Subsection 1.9.5 is the best
one can hope for.)

Show how to simulate an N2Y¥~!-node butterfly on an N-node
linear array with slowdown 2. (Hint: Look ahead to Chapter 3
for the definition of a butterfly.)

Given a problem of size M that can be solved in T steps on an
M-node butterfly, how large must M be (in terms of N) in order
for us to be able to solve the problem in O(TM/N) steps on an
N-cell linear array? (You may assume that the simulation result
described in Problem 1.306 is the best possible.)

Show how to simulate a \/NZ‘/N‘I—node butterfly on an VN xv/N
array with O(2Y¥/v/N) slowdown. (Hint: You may need to use
the packet routing results from Section 1.7.)

How large does the size of the problem described in Problem 1.307
need to be in order to solve the problem in O(TM/N) steps on a
VN x /N array? (You may assume that the simulation described
in Problem 1.308 is optimal.)

Extend the result of Problem 1.308 to higher-dimensional arrays.
Extend the result of Problem 1.309 to higher-dimensional arrays.

272 Section 1.11 Bibliographic Notes

1.11 Bibliographic Notes

There is a very large body of literature on the subject of array and tree
algorithms for parallel computation. We will not attempt to cite all (or even
a large portion) of this literature in this text. Rather, we will be content
to provide pointers to some of the most relevant and useful references on
this subject matter and to sources that were particularly helpful in the
preparation of the text.

1.1

The simple sorting algorithm for linear arrays described in Section 1.1 is
sometimes referred to as a “zero-time sorter,” although it uses substan-
tially more than zero time to sort N numbers. Miranker, Tang, and Wong
describe a variation of this algorithm in 176}, as do Armstrong and Rem
in [14]. The use of bisection width to prove lower bounds on the running
time of an algorithm is due to Thomborson (a.k.a. Thompson) [242, 243].
Lower bound arguments such as those briefly mentioned in Section 1.1 will
be discussed in much greater detail in Volume II. Problem 1.9 was con-
tributed by Atallah. Related results involving a hybrid model of parallel
computation in which a parallel network of processors (each with a bounded
memory) is connected to a sequential front-end processor (with unlimited
memory) can be found in the work of Atallah and Tsay [20]. Problem 1.10
was suggested by Thomborson. Additional results on selection and median
finding using a tree network (see Problem 1.19) can be found in the work
of Frederickson [76].

1.2

The carry-lookahead addition algorithm of Subsection 1.2.1 is very simi-
lar to algorithms described by Winograd [262], Brent [38], and Brent and
Kung [39], among others. The parallel prefix algorithm described in Sub-
section 1.2.2 is contained in the work of Ladner and Fischer [138] and
Brent and Kung [39]. The carry-save addition algorithm described in Sub-
section 1.2.3 is implicit in the work of Wallace [259] and Dadda [61]. The
integer multiplication algorithm of Subsection 1.2.4 is similar to many al-
gorithms described in the literature. (See the article by Wu [263] for a
summary and survey of this literature.) In addition, the result of Prob-
lem 1.130 is due to Atrubin [21] and Muller [178]. Related algorithms for
convolution and integer multiplication are described in Section 1.4. Linear

Section 1.11 Bibliographic Notes 273

array algorithms for division that are not based on Newton iteration are
described by Brickell in [41]. The greatest common divisor algorithm de-
scribed in Problem 1.50 is due to Brent and Kung (40]. Problem 1.32 was
contributed by Leiserson.

1.3

The odd-even reduction algorithm for solving tridiagonal systems of equa-
tions in Subsection 1.3.3 is similar to algorithms described by Golub and
Hockney [100, 101] and Ericksen {72]. The prefix-based algorithm for com-
puting an LU-factorization of a tridiagonal matrix described in Subsec-
tion 1.3.3 is due to Stone [236]. For more information and references on
numerical methods and parallel linear algebra, we refer the reader to the
survey papers by Ortega and Voigt [189] and Gallivan, Plemmons, and
Sameh [80], and the texts by Bertsekas and Tsitsiklis [28], Golub and Van
Loan [83], Strang [240], and Kung [137]. Problems 1.54 and 1.59 are solved
by Culik and Yu in [55].

1.4

Most of the material on retiming in Section 1.4 (including several of the
exercises) was derived from the work Seiferas [223] and Leiserson and
Saxe [153]. Further material on this subject can be found in the work
of Culik and Fris [54], Leiserson and Saxe [154], and Even and Litman [73].
Much of the early work on systolic computation appears in the automata
literature (e.g., see the text edited by Shannon and McCarthy [226] and the
work of Kosaraju [122]). Problem 1.131 was solved by Smith in [231]. The
multiplication algorithm described in Problem 1.130 is due to Atrubin-[21]
and Muller {178]. In addition, the material covered in Problems 1.129-
1.132 is explored in much greater detail and generality by Even and Litman
in [73]. A history and efficient solution of the Firing Squad Problem (see
Problems 1.134-1.137) is given by Culik and Dube in [53].

1.5

Much of the material and many of the exercises from Section 1.5 are due
to Christopher [50], Guibas, Kung and Thomborson [88], and Atallah and
Kosaraju [19]. The algorithm for minimum-weight spanning trees in Sub-
section 1.5.5 is due to Maggs and Plotkin [164]. Some interesting algo-
rithms for tree problems and data structures are described by Atallah and

274 Section 1.11 Bibliographic Notes

Hambrusch in [18]. References to other work on graph algorithms can be
found in these sources.

1.6

The 0-1 Sorting Lemma is due to Knuth {117]. The odd-even transposition
sort algorithm described in Subsection 1.6.1 was analyzed by Haberman
in [89]. The Shearsort algorithm described in Subsection 1.6 was discov-
ered by Sado and Igarishi [215] and Scherson, Sen and Shamir {216]. The
faster sorting algorithm described in Subsection 1.6.3 is due to Schnorr
and Shamir [217]. Many O(v/N)-step algorithms for sorting on an ar-
ray have been discovered, beginning with the algorithm of Thomborson
and Kung [244]. Some of these algorithms are based on the early work of
Batcher [23]. The lower bound of Subsection 1.6.4 was discovered by many,
including Schnorr and Shamir {217} and Kunde [130].

The Revsort algorithm described in Problem 1.164 is due to Schnorr
and Shamir [217]. A solution to Problem 1.174 is described by Chlebus
in [48]. The solutions to Problems 1.183 and 1.184 are due to Mansour and
Schulman [166]. The Columnsort algorithm described in Problem 1.187 is
due to Leighton [144]. Lower bounds for sorting into arbitrary orders (as
in Problem 1.179) are described by Han and Igarashi in [91] and Kunde
in [132]. Toroidal sorting algorithms are described by Kunde in [133]. Very
recent work on array sorting algorithms is reported by Kunde in {134] and
Kaklamanis, Krizanc, Narayanan, and Tsantilas in {109]. References to
other work on sorting algorithms for arrays and tori can be found in these
sources as well as the survey paper by Chlebus and Kukawka [49].

1.7

The material in Subsection 1.7.2 is due to Leighton [145]. Related material
on randomized algorithms for packet routing is contained in the work of
Valiant and Brebner [253] and Krizanc, Rajasekaran, and Tsantilas [124].
For a review of the probabilistic and analytical methods used in Subsec-
tions 1.7.2-1.7.3 (including Stirling’s formula), we refer the reader to the
text by Graham, Knuth, and Patashnik [84].

The use of sorting as a preconditioner to routing is described by Kunde
in [133, 135]. A (2v/N — 2)-step algorithm for routing with constant queue
size is described by Leighton, Makedon, and Tollis in [150]. The constant
in the queue size of this algorithm was recently improved by Rajasekaran
and Overholt in [208]. Algorithms for routing more than N packets on

Section 1.11 Bibliographic Notes 275

an N-node array are described by Kunde and Tensi in [136] and Simvonis
in [230]. Recently discovered algorithms for sorting and selection on arrays
are reported by Kaklamanis, Krizanc, Narayanan, and Tsantilis in [109].

The off-line algorithm described in Subsection 1.7.5 is generalized to
a wide variety of networks by Annexstein and Baumslag in [12]. Theo-
rem 1.17 is due to Hall [90]. Problems 1.239 and 1.240 were contributed
by Krizanc. Algorithms for bit-serial, cut-through, and wormhole rout-
ing on arrays are contained in work by Kermani and Kleinrock [115],
Dally and Seitz [64], Dally [63], Flaig [74], Kunde [134], Ngai [187], Ngai
and Seitz [188], Makedon and Simvonis [165], and Borkar, Cohn, Cox,
Gross, Kung, Lam, Levine, Wire, Peterson, Susman, Sutton, Urbanski,
and Webb [36]. Problems 1.257 and 1.258 are solved by Atallah and Ham-
brusch in [18].

1.8

The region-labelling algorithms of Subsection 1.8.1 can be found in the
work of Levialdi [156], Nassimi and Sahni [182], and Cypher, Sanz, and
Snyder [58]. Optimal algorithms for computing Hough transforms can be
found in the work of Cypher, Sanz, and Snyder [59] and Guerra and Hambr-
usch [87]. Algorithms for finding convex hulls and for solving many related
problems in image processing and computational geometry on arrays are
contained in the work of Miller and Stout [171, 175], Jeong and Lee [107],
and Lu and Varman [158]. References to additional material can also be
found in these papers. The text by Kung [137] also describes a variety of
algorithms for image processing on arrays.

1.9

The proof technique of Theorem 1.21 is due to Leighton [141, 142], al-
though other proofs of this result are well known in the literature. The
sorting algorithm in Subsection 1.9.3 is due to Kunde [129]. Improved
bounds and algorithms for sorting in multidimensional arrays (e.g., see
Problems 1.290-1.293) are described by Kunde in [130, 131, 133]. Addi-
tional material on routing in multidimensional arrays can be found in the
work of Kunde [134] and Kunde and Tensi [136]. Extensions of the mate-
rial described in Subsection 1.9.5 can be found in the work of Atallah [17],
Kosaraju and Atallak [123], and Koch, Leighton, Maggs, Rao, and Rosen-
berg [121]. Interesting variations of multidimensional arrays are described
by Dally in [62] and Draper in [69].

276 Section 1.11 Bibliographic Notes

Miscellaneous

Many array algorithms appear in the literature under the heading of cel-
lular arrays or cellular automata. Readers interested specifically in the
subject of cellular automata are referred to the text by Toffoli and Mar-
golus [245]. There has also been a fair amount of work on techniques for
automatically mapping algorithms with a certain structure onto arrays.
Readers interested in this subject are referred to the papers by Chen [47]
and Kumar and Tsai [128]. References to additional material on this sub-
ject can be found in these sources.

Algorithms for the pyramid network are described by Miller and Stout
in [172]. References to related work can also be found in this source.
Algorithms for arrays with busses can be found in the work of Stout [239].
For more information on signal processing algorithms on arrays, we refer
the reader to the text by Kung [137]. For more information on algorithms
where inputs are provided more than once, we refer the reader to the paper
by Duris and Galil [70] and the references contained therein.

CHAPTER 2

MESHES OF TREES

Although arrays and trees are relatively simple to build and are quite
efficient for some algorithms, they suffer from two major drawbacks: large
diameter and/or small bisection width. As a result, the speed with which
they can be used to solve many problems is highly limited.

In this chapter, we consider a hybrid network architecture based on
arrays and trees called the mesh of trees. Meshes of trees have both small
diameter and large bisection width, and are the fastest networks known
when considered solely in terms of speed. In fact, every problem discussed
in Chapter 1 can be solved in ©(log N) or O(log® N) steps on a suitably
large mesh of trees. This is dramatically faster than the typical running
times of ©(v/N) or ©(N) for algorithms on arrays and trees.

Running times that are bounded by a constant power of log.lV such as
O(log N) or O(log® N) are said to be polylogarithmic. Algorithms that run
in polylogarithmic time on a network with a polynomial (e.g., N2 or N?)
number of processors form the class NC. For example, the parallel prefix
algorithm described in Chapter 1 is in NC, but most of the other algorithms
are not. Henceforth, we will be primarily concerned with networks that are
capable of supporting NC algorithms.

The tremendous advantage of meshes of trees over arrays is that the
dramatic speedups in time can often be accomplished without increasing
the number of processors. For example, we will need only ©(N?) processors
to compute the connected components of an N-node graph in ©(log” V)
steps using a mesh of trees, whereas the same problem requires ©(NV) steps

278 CHAPTER 2 Meshes of Trees

on an N x N array. Unfortunately, such economies are not possible for
all problems. For example, sorting N numbers in ©(log N) steps requires
©(N?) processors on a mesh of trees, instead of the N processors required
to sort in ©(v/N) steps on an array. For such problems, we will have to
wait until Chapter 3 before finding a network that is both fast and small.

Even for problems such as sorting, however, where the mesh of trees
is not processor efficient, we will later find that the mesh of trees is area
efficient. In particular, we will show in Volume II that the mesh of trees is
area universal (i.e., that it can simulate any other network with the same
VLSI wire area with only a polylogarithmic factor slowdown). We will also
show in Chapter 3 that mesh of trees algorithms can be run on hypercubic
networks without slowing the algorithm down or increasing the number
of processors. Hence, the mesh of trees is a very important network, and
worthy of considerable attention.

We start our discussion of meshes of trees by defining the two-dimen-
sional mesh of trees in Section 2.1. The computational power of the mesh
of trees will become immediately apparent in Section 2.2 when we describe
elementary O(log N)-step algorithms for a wide variety of problems on the
N x N mesh of trees. Included are algorithms for packet routing, sorting,
matrix-vector multiplication, Jacobi relaxation, pivoting, convolution, and
convex hull. We continue with some more sophisticated O(log N)-step
algorithms for integer multiplication, powering, division, and root finding
in Section 2.3.

The three-dimensional mesh of trees is defined in Section 2.4. Like the
two-dimensional mesh of trees, the three-dimensional mesh of trees can
be used to solve many problems quickly, but is most naturally suited to
problems involving matrix multiplication (which takes just 2log N steps
on an V x N x N mesh of trees). Several such problems are discussed in
Section 2.4, including matrix inversion, decomposition, and powering.

Meshes of trees are also particularly well suited for graph problems. For
example, in Section 2.5, we describe algorithms for finding the minimum-
weight spanning tree, connected components, transitive closure, all pairs
shortest paths, and maximum matching of an N-node graph in O(log® N)
steps on a mesh of trees. The algorithms for finding a minimum-weight
spanning tree and the connected components of a graph run on an N x N
mesh of trees, and make use of a powerful doubling up technique known
as pointer jumping. The algorithms have many applications, and can be
applied to solve several of the image-processing problems discussed in Sec-

CHAPTER 2 Meshes of Trees 279

tion 1.8 using only O(log® N) steps on a VN x v/N mesh of trees.

The algorithms for transitive closure, shortest paths, and maximum
matching run on an N x N x N mesh of trees, and are closely related
to the matrix multiplication and inversion algorithms of Section 2.4. The
maximum matching algorithm, in particular, inverts a randomly weighted
adjacency matrix of a graph to find good matchings in the graph. Although
the algorithm is not deterministic, it will find the maximum matching in
any N-node graph in O(log? N) steps with probability very close to one.
This result provides our first example of a problem that is in RNC (i.e., it
can be solved by a randomized NC algorithm), but for which there is no
known NC solution.

In Section 2.6, we describe a general procedure for evaluating straight-
line arithmetic code in parallel. The material in this section is particu-
larly interesting because it is as close as we will ever get to “automatic”
parallelization of sequential algorithms. In particular, we will show how
to automatically parallelize any N-step straight-line (i.e., nonbranching)
arithmetic code so that it runs in O(logdN log N) steps, where d is a pa-
rameter that reflects the complexity of the code. In the worst case, d can
be exponential in N, and the parallel running time won’t be very good.
For many important problems, however, d is polynomial in N, and the
resulting parallel code will run in O(log® N) steps. Using this process,
we can automatically derive O(log® N)-step parallel algorithms for such
difficult problems as matrix inversion and computing determinants of ma-
trices with multivariable polynomial entries. Unfortunately, the parallel
algorithms derived by this procedure are not processor efficient.

We describe higher-dimensional meshes of trees and some related net-
works in Section 2.7. The material in this section provides a good back-
ground for Chapter 3, where we define the shuffle-exchange graph and
discuss its relationship with the hypercube.

We conclude the chapter with several exercises and bibliographic notes
in Sections 2.8 and 2.9.

280 Section 2.1 The Two-Dimensional Mesh of Trees

2.1 The Two-Dimensional Mesh of Trees

In this section, we define the two-dimensional mesh of trees and discuss its
properties. The section is divided into five subsections. Each of the first
four subsections presents a different way to define and/or think about the
network. The various definitions of the mesh of trees will prove to be useful
later in the chapter when we will describe how to implement algorithms on
the network.

We conclude in Subsection 2.1.5 by comparing the structure and com-
putational power of the mesh of trees to the pyramid and multigrid. Al-
though the mesh of trees appears to be similar to the pyramid and multigrid
in many respects, we will find that the mesh of trees is a substantially more
powerful interconnection network.

2.1.1 Definition and Properties

The N x N mesh of trees is constructed from an N x N grid of processors
by adding processors and wires to form a complete binary tree in each row
and each column. The leaves of the trees are precisely the original N2
nodes of the grid, and the added nodes are precisely the internal nodes of
the trees. Overall, the network has 3N? — 2N processors. The leaf and
root processors have degree 2, and all other processors have degree 3. For
example, see Figure 2-1.

It is not difficult to check that the N x N mesh of trees has diameter
4log N. For example, to construct a path of length at most 4log N from
any node u in the ith row tree to any node v in the jth column tree, we
first construct the path of length at most 2log N from u to z in the ith
row tree where z is the unique leaf shared by the ith row tree and the jth
column tree, and then finish with the path of length at most 2log N from
z to v in the jth column tree. In order to construct a path of length at
most 4]og N from any node u in the rth level of the ith row tree to any
node v in the sth level of the jth row tree where r > s (without loss of
generality), we start with the path of length log N — r from u to one of its
descendant leaves in the ith row tree, continue with the path of length at
most 2log V from this leaf to a leaf in the jth row tree, and finish with
the path of length at most log NV + s from that leaf to v in the jth row
tree. Since s < r, the total path length is at most 4log N. A symmetric
argument reveals that the distance between any two column tree nodes is
also at most 4log N. For example, see Figure 2-2.

N x N grid of nodes

nodes and edges added
to form column trees

2.1.1 Definition and Properties 281

e T
e T
e T
e T

nodes and edges added
to form row trees

the N x N mesh of trees

Figure 2-1 The two-dimensional mesh of trees. Leaf nodes from the original
grid are denoted with circles. Nodes added to form column trees are denoted with
squares, and nodes added to form row trees are denoted with triangles.

