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Preface

This is intended to be a simple and accessible book on information
theory. As Einstein said, “Everything should be made as simple as
possible, but no simpler.” Although we have not verified the quote (first
found in a fortune cookie), this point of view drives our development
throughout the book. There are a few key ideas and techniques that,
when mastered, make the subject appear simple and provide great
intuition on new questions.

This book has arisen from over ten years of lectures in a two-quarter
sequence of a senior and first-year graduate level course in information
theory, and is intended as an introduction to information theory for
students of communication theory, computer science and statistics.

There are two points to be made about the simplicities inherent in
information theory. First, certain quantities like entropy and mutual
information arise as the answers to fundamental questions. For exam-
ple, entropy is the minimum descriptive complexity of a random vari-
able, and mutual information is the communication rate in the presence
of noise. Also, as we shall point out, mutual information corresponds to
the increase in the doubling rate of wealth given side information.
Second, the answers to information theoretic questions have a natural
algebraic structure. For example, there is a chain rule for entropies, and
entropy and mutual information are related. Thus the answers to
problems in data compression and communication admit extensive
interpretation. We all know the feeling that follows when one investi-
gates a problem, goes through a large amount of algebra and finally
investigates the answer to find that the entire problem is illuminated,
not by the analysis, but by the inspection of the answer. Perhaps the
outstanding examples of this in physics are Newton’s laws and

vii



iii PREFACE

Schrodinger’s wave equation. Who could have foreseen the awesome
philosophical interpretations of Schrodinger’s wave equation?

In the text we often investigate properties of the answer before we
look at the question. For example, in Chapter 2, we define entropy,
relative entropy and mutual information and study the relationships
and a few interpretations of them, showing how the answers fit together
in various ways. Along the way we speculate on the meaning of the
second law of thermodynamics. Does entropy always increase? The
answer is yes and no. This is the sort of result that should please
experts in the area but might be overlooked as standard by the novice.

In fact, that brings up a point that often occurs in teaching. It is fun
to find new proofs or slightly new results that no one else knows. When
one presents these ideas along with the established material in class,
the response is “sure, sure, sure.” But the excitement of teaching the
material is greatly enhanced. Thus we have derived great pleasure from
investigating a number of new ideas in this text book.

Examples of some of the new material in this text include the chapter
on the relationship of information theory to gambling, the work on the
universality of the second law of thermodynamics in the context of
Markov chains, the joint typicality proofs of the channel capacity
theorem, the competitive optimality of Huffman codes and the proof of
Burg’s theorem on maximum entropy spectral density estimation. Also
the chapter on Kolmogorov complexity has no counterpart in other
information theory texts. We have also taken delight in relating Fisher
information, mutual information, and the Brunn-Minkowski and en-
tropy power inequalities. To our surprise, many of the classical results
on determinant inequalities are most easily proved using information
theory.

Even though the field of information theory has grown considerably
since Shannon’s original paper, we have strived to emphasize its coher-
ence. While it is clear that Shannon was motivated by problems in
communication theory when he developed information theory, we treat
information theory as a field of its own with applications to communica-
tion theory and statistics.

We were drawn to the field of information theory from backgrounds in
communication theory, probability theory and statistics, because of the
apparent impossibility of capturing the intangible concept of infor-
mation.

Since most of the results in the book are given as theorems and
proofs, we expect the elegance of the results to speak for themselves. In
many cases we actually describe the properties of the solutions before
introducing the problems. Again, the properties are interesting in them-
selves and provide a natural rhythm for the proofs that follow.

One innovation in the presentation is our use of long chains of
inequalities, with no intervening text, followed immediately by the
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explanations. By the time the reader comes to many of these proofs, we
expect that he or she will be able to follow most of these steps without
any explanation and will be able to pick out the needed explanations.
These chains of inequalities serve as pop quizzes in which the reader
can be reassured of having the knowledge needed to prove some im-
portant theorems. The natural flow of these proofs is so compelling that
it prompted us to flout one of the cardinal rules of technical writing. And
the absence of verbiage makes the logical necessity of the ideas evident
and the key ideas perspicuous. We hope that by the end of the book the
reader will share our appreciation of the elegance, simplicity and
naturalness of information theory.

Throughout the book we use the method of weakly typical sequences,
which has its origins in Shannon’s original 1948 work but was formally
developed in the early 1970s. The key idea here is the so-called asymp-
totic equipartition property, which can be roughly paraphrased as
“Almost everything is almost equally probable.”

Chapter 2, which is the true first chapter of the subject, includes the
basic algebraic relationships of entropy, relative entropy and mutual
information as well as a discussion of the second law of thermodynamics
and sufficient statistics. The asymptotic equipartition property (AEP) is
given central prominence in Chapter 3. This leads us to discuss the
entropy rates of stochastic processes and data compression in Chapters
4 and 5. A gambling sojourn is taken in Chapter 6, where the duality of
data compression and the growth rate of wealth is developed.

The fundamental idea of Kolmogorov complexity as an intellectual
foundation for information theory is explored in Chapter 7. Here we
replace the goal of finding a description that is good on the average with
the goal of finding the universally shortest description. There is indeed a
universal notion of the descriptive complexity of an object. Here also the
wonderful number Q is investigated. This number, which is the binary
expansion of the probability that a Turing machine will halt, reveals
many of the secrets of mathematics.

Channel capacity, which is the fundamental theorem in information
theory, is established in Chapter 8. The necessary material on differen-
tial entropy is developed in Chapter 9, laying the groundwork for the
extension of previous capacity theorems to continuous noise channels.
The capacity of the fundamental Gaussian channel is investigated in
Chapter 10.

The relationship between information theory and statistics, first
studied by Kullback in the early 1950s, and relatively neglected since, is
developed in Chapter 12. Rate distortion theory requires a little more
background than its noiseless data compression counterpart, which
accounts for its placement as late as Chapter 13 in the text.

The huge subject of network information theory, which is the study of
the simultaneously achievable flows of information in the presence of
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noise and interference, is developed in Chapter 14. Many new ideas
come into play in network information theory. The primary new ingredi-
ents are interference and feedback. Chapter 15 considers the stock
market, which is the generalization of the gambling processes consid-
ered in Chapter 6, and shows again the close correspondence of informa-
tion theory and gambling.

Chapter 16, on inequalities in information theory, gives us a chance
to recapitulate the interesting inequalities strewn throughout the book,
put them in a new framework and then add some interesting new
inequalities on the entropy rates of randomly drawn subsets. The
beautiful relationship of the Brunn-Minkowski inequality for volumes of
set sums, the entropy power inequality for the effective variance of the
sum of independent random variables and the Fisher information
inequalities are made explicit here. -

We have made an attempt to keep the theory at a consistent level.
The mathematical level is a reasonably high one, probably senior year or
first-year graduate level, with a background of at least one good semes-
ter course in probability and a solid background in mathematics. We
have, however, been able to avoid the use of measure theory. Measure
theory comes up only briefly in the proof of the AEP for ergodic
processes in Chapter 15. This fits in with our belief that the fundamen-
tals of information theory are orthogonal to the techniques required to
bring them to their full generalization.

Each chapter ends with a brief telegraphic summary of the key
results. These summaries, in equation form, do not include the qualify-
ing conditions. At the end of each we have included a variety of
problems followed by brief historical notes describing the origins of the
main results. The bibliography at the end of the book includes many of
the key papers in the area and pointers to other books and survey
papers on the subject.

The essential vitamins are contained in Chapters 2, 3, 4, 5, 8, 9, 10,
12, 13 and 14. This subset of chapters can be read without reference to
the others and makes a good core of understanding. In our opinion,
Chapter 7 on Kolmogorov complexity is also essential for a deep under-
standing of information theory. The rest, ranging from gambling to
inequalities, is part of the terrain illuminated by this coherent and
beautiful subject.

Every course has its first lecture, in which a sneak preview and
overview of ideas is presented. Chapter 1 plays this role.

Tom COVER
Joy THOMAS

Palo Alto, June 1991



Acknowledgments

We wish to thank everyone who helped make this book what it is. In
particular, Toby Berger, Masoud Salehi, Alon Orlitsky, Jim Mazo and
Andrew Barron have made detailed comments on various drafts of the
book which guided us in our final choice of content. We would like to
thank Bob Gallager for an initial reading of the manuscript and his
encouragement to publish it. We were pleased to use twelve of his
problems in the text. Aaron Wyner donated his new proof with Ziv on
the convergence of the Lempel-Ziv algorithm. We would also like to
thank Norman Abramson, Ed van der Meulen, Jack Salz and Raymond
Yeung for their suggestions.

Certain key visitors and research associates contributed as well,
including Amir Dembo, Paul Algoet, Hirosuke Yamamoto, Ben
Kawabata, Makoto Shimizu and Yoichiro Watanabe. We benefited from
the advice of John Gill when he used this text in his class. Abbas El
Gamal made invaluable contributions and helped begin this book years
ago when we planned to write a research monograph on multiple user
information theory. We would also like to thank the Ph.D. students in
information theory as the book was being written: Laura Ekroot, Will
Equitz, Don Kimber, Mitchell Trott, Andrew Nobel, Jim Roche, Erik
Ordentlich, Elza Erkip and Vittorio Castelli. Also Mitchell Oslick,
Chien-Wen Tseng and Michael Morrell were among the most active
students in contributing questions and suggestions to the text. Marc
Goldberg and Anil Kaul helped us produce some of the figures. Finally
we would like to thank Kirsten Goodell and Kathy Adams for their
support and help in some of the aspects of the preparation of the
manuscript. ’

xi



xti ACKNOWLEDGMENTS

Joy Thomas would also like to thank Peter Franaszek, Steve
Lavenberg, Fred Jelinek, David Nahamoo and Lalit Bahl for their
encouragement and support during the final stages of production of this
book.

Tom COVER
Joy THOMAS



Contents

List of Figures xix

1 Introduction and Preview 1
1.1 Preview of the book / 5

2 Entropy, Relative Entropy and Mutual Information 12

2.1 Entropy / 12

2.2 doint entropy and conditional entropy / 15

2.3 Relative entropy and mutual information / 18

2.4 Relationship between entropy and mutual information / 19

2,5 Chain rules for entropy, relative entropy and mutual
information / 21

2.6 Jensen’s inequality and its consequences / 23
2.7  The log sum inequality and its applications / 29
2.8 Data processing inequality / 32
2.9 The second law of thermodynamics / 33
2.10 Sufficient statistics / 36
2.11 Fano’s inequality / 38

Summary of Chapter 2 / 40

Problems for Chapter 2 / 42

Historical notes / 49

3 The Asymptotic Equipartition Property 50
3.1 The AEP / 51

xiit



CONTENTS

3.2 Consequences of the AEP: data compression / 53
3.3 High probability sets and the typical set / 55
Summary of Chapter 3 / 56
Problems for Chapter 3 / 57
Historical notes / 59

Entropy Rates of a Stochastic Process 60

4.1 Markov chains / 60
4.2 Entropy rate / 63

4.3 Example: Entropy rate of a random walk on a weighted
graph / 66

4.4 Hidden Markov models / 69
Summary of Chapter 4 / 71
Problems for Chapter 4 / 72
Historical notes / 77

Data Compression 78

5.1 Examples of codes / 79

5.2 Kraft inequality / 82

5.3 Optimal codes / 84

5.4 Bounds on the optimal codelength / 87

5.5 Kraft inequality for uniquely decodable codes / 90
5.6 Huffman codes / 92

5.7 - Some comments on Huffman codes / 94

5.8 Optimality of Huffman codes / 97

5.9 Shannon-Fano-Elias coding / 101

5.10 Arithmetic coding / 104

5.11. Competitive optimality of the Shannon code / 107

5.12 Generation of discrete distributions from fair
coins / 110

Summary of Chapter 5 / 117
Problems for Chapter 5 / 118
Historical notes / 124

Gambling and Data Compression 125

6.1 The horse race / 125

6.2 Gambling and side information / 130

6.3 Dependent horse races and entropy rate / 131
6.4 The entropy of English / 133

6.5 Data compression and gambling / 136



CONTENTS 2

6.6 Gambling estimate of the entropy of English / 138
Summary of Chapter 6 / 140
Problems for Chapter 6 / 141
Historical notes / 143

7 Kolmogorov Complexity 144

7.1 Models of computation / 146

7.2 Kolmogorov complexity: definitions and examples / 147
7.3  Kolmogorov complexity and entropy / 153

7.4 Kolmogorov complexity of integers / 155

7.5  Algorithmically random and incompressible
sequences / 156

7.6 Universal probability / 160

7.7  The halting problem and the non-computability of
Kolmogorov complexity / 162

78 O/ 164
7.9 Universal gambling / 166
7.10 Occam’s razor / 168
7.11 Kolmogorov complexity and universal probability / 169
7.12 The Kolmogorov sufficient statistic / 175
Summary of Chapter 7 / 178
Problems for Chapter 7 / 180
Historical notes / 182

8 Channel Capacity 183

8.1 [Examples of channel capacity / 184

8.2 Symmetric channels / 189

8.3 Properties of channel capacity / 190

8.4 Preview of the channel coding theorem / 191
8.5 Definitions / 192

8.6 Jointly typical sequences / 194

8.7 The channel coding theorem / 198

8.8  Zero-error codes / 203

8.9 Fano’s inequality and the converse to the coding
theorem / 204

8.10 Equality in the converse to the channel coding
theorem / 207

8.11 Hamming codes / 209
8.12 Feedback capacity / 212



10

11

CONTENTS
8.13 The joint source channel coding theorem / 215
Summary of Chapter 8 / 218
Problems for Chapter 8 / 220
Historical notes / 222
Differential Entropy 224
9.1 Definitions / 224

9.2
9.3
9.4
9.5
9.6

9.7

The AEP for continuous random variables / 225
Relation of differential entropy to discrete entropy / 228
Joint and conditional differential entropy / 229

Relative entropy and mutual information / 231

Properties of differential entropy, relative entropy and
mutual information / 232

Differential entropy bound on discrete entropy / 234
Summary of Chapter 9 / 236

Problems for Chapter 9 / 237

Historical notes / 238

The Gaussian Channel 239
10.1 The Gaussian channel: definitions / 241
10.2 Converse to the coding theorem for Gaussian
channels / 245
10.3 Band-limited channels / 247
10.4 Parallel Gaussian channels / 250
10.5 Channels with colored Gaussian noise / 253
10.6 Gaussian channels with feedback / 256
Summary of Chapter 10 / 262
Problems for Chapter 10 / 263
Historical notes / 264
Maximum Entropy and Spectral Estimation 266
11.1 Maximum entropy distributions / 266
11.2 Examples / 268
11.3 An anomalous maximum entropy problem / 270
11.4 Spectrum estimation / 272
11.5 Entropy rates of a Gaussian process / 273
11.6 Burg’s maximum entropy theorem / 274

Summary of Chapter 11 / 277
Problems for Chapter 11 / 277
Historical notes / 278



-

CONTENTS

12.1
12.2
123
12.4
12.5
12.6
12.7
12.8
12,9
12.10
12.11

13 Rate

13.1
13.2
13.3
13.4
13.5
13.6
13.7
138

12 Information Theory and Statistics

The method of types / 279

The law of large numbers / 286
Universal source coding / 288
Large deviation theory / 291
Examples of Sanov’s theorem / 294
The conditional limit theorem / 297
Hypothesis testing / 304

Stein’s lemma / 309

Chernoff bound / 312

Lempel-Ziv coding / 319

Fisher information and the Cramér-Rao
inequality / 326

Summary of Chapter 12 / 331
Problems for Chapter 12 / 333
Historical notes / 335

Distortion Theory

Quantization / 337

Definitions / 338

Calculation of the rate distortion function / 342
Converse to the rate distortion theorem / 349
Achievability of the rate distortion function / 351
Strongly typical sequences and rate distortion / 358
Characterization of the rate distortion function / 362

Computation of channel capacity and the rate
distortion function / 364

Summary of Chapter 13 / 367
Problems for Chapter 13 / 368
Historical notes / 372

14 Network Information Theory

14.1
14.2
14.3
144
14.5

14.6
14.7

Gaussian multiple user channels / 377
Jointly typical sequences / 384

The multiple access channel / 388
Encoding of correlated sources / 407

Duality between Slepian-Wolf encoding and multiple
access channels / 416

The broadcast channel / 418
The relay channel / 428

279

374



xviii

14.8
14.9

CONTENTS

Source coding with side information / 432
Rate distortion with side information / 438

14.10 General multiterminal networks / 444

Summary of Chapter 14 / 450
Problems for Chapter 14 / 452
Historical notes / 457

15 Information Theory and the Stock Market 459

15.1
15.2

15.3
15.4
15.5
15.6
15.7

The stock market: some definitions / 459
Kuhn-Tucker characterization of the log-optimal

‘portfolio / 462

Asymptotic optimality of the log-optimal portfolio / 465
Side information and the doubling rate / 467
Investment in stationary markets / 469

Competitive optimality of the log-optimal portfolio / 471
The Shannon-McMillan-Breiman theorem / 474
Summary of Chapter 15 / 479

Problems for Chapter 15 / 480

Historical notes / 481

16 Inequalities in Information Theory 482

16.1
16.2
16.3
16.4
16.5
16.6
16.7

16.8
16.9

Basic inequalities of information theory / 482
Differential entropy / 485

Bounds on entropy and relative entropy / 488
Inequalities for types / 490

Entropy rates of subsets / 490

Entropy and Fisher information / 494

The entropy power inequality and the Brunn-
Minkowski inequality / 497

Inequalities for determinants / 501
Inequalities for ratios of determinants / 505
Overall Summary / 508

Problems for Chapter 16 / 509

Historical notes / 509

Bibliography 510

List of Symbols 526

Index

529



