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Preface

This volume contains the refereed proceedings of the International Conference
on Combinatorial and Computational Algebra which was held at the University
of Hong Kong, Hong Kong Special Administrative Region. China from May 24 to
29, 1999. The conference was a part of the Algebra Program at the Institute of
Mathematical Research and the Department of Mathematics of the University of
Hong Kong.

The following topics were covered during the conference:

- Combinatorial and Computational Aspects of Group Theory

- Combinatorial and Computational Aspects of Associative and Nonassociative
Algebras

- Automorphisms of Polynomial Algebras and the Jacobian Conjecture

- Combinatorics and Coding Theory.

In this volume the readers will find several excellent survey papers as well
as research papers containing many significant new results on the subject. The
emphasis was made on connections with other areas of mathematics. We hope that
this volume will serve as an introductory guide for graduate students and as a good
reference for further research in Combinatorial and Computational Algebra. We
would like to thank all invited speakers for their beautifully presented motivating
lectures and articles. We express our sincere gratitude to all the referees for their
invaluable help. We are grateful to the American Mathematical Society for the help
in the production of this volume. In particular we thank Christine M. Thivierge
for her patient work in putting this volume together.

Finally, we want to express our special gratitude to the Department of Mathe-
matics and the Institute of Mathematical Research of the University of Hong Kong
for their warm hospitality, stimulating atmosphere and financial support.

Kai Yuen CHAN
Alexander A. MIKHALEV
Man-Keung SIU

Jie-Tai YU

Efim I. ZELMANOV

June 2000
New Haven — Hong Kong
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DEFORMATIONS AND LIFTINGS OF REPRESENTATIONS

ELI ALJADEFF AND ANDY R. MAGID

Technion (E.A.) and University of Oklahoma (A.R.M.)

ABSTRACT. k is an algebraically closed field of characteristic zero. A finitely gener-
ated group I' is n rigid if there are only finitely many isomorphism classes of irre-
ducible representations ' — GL, (k). T is not n rigid if and only if there exists a sim-
ple representation p : [' — G'Ly (k) which lifts non-trivially to p: : T' — GLn (k{[t]]).
Call p; a deformation of py. The existence of p; is equivalent to a consistent family of
non-trivial lifts pq : I — GL,, (k[t]/t®"1). We show that for I' a reductive extension
of a class r nilpotent if pg lifts to level r 4+ 1 then pg deforms.

INTRODUCTION

We work throughout over an algebraically closed field k of characteristic zero,
which can be taken to be the complex numbers C.

This paper is the first of a series of planned investigations of deformations and
liftings of representations of finitely generated groups. In its first four sections, we
present the background definitions. results, and constructions on which the future
work will lie. In the final section. we analyze the special case of nilpotent by
reductive groups.

To accurately describe the contents of the paper requires the precise definitions
and formulations given below. Loosely speaking, however. we can say the follow-
ing: some groups. such as finite groups and arithmetic groups in simple algebraic
groups, have the property that they have only finitely many isomorphism classes of
irreducible complex representations in any given degree. For those that don’t, the
infinitely many isomorphism classes of simple representations in any given degree
can be given the structure of an algebraic variety, and the geometric properties of
that variety (for example, its dimension) can be used to understand the collection of
classes of representations. Actually all finitely generated groups have such represen-
tation varieties: for those with finitely many isomorphism classes of representations
in each degree, the varieties are just finite sets of isolated points.

An isolated point in a variety of classes of representations is the class of a rep-
resentation which has the property that all representations in a neighborhood of it
are isomorphic to it. Such a representation is called rigid. Representations without
this property. that is, ones with non-isomorphic representations arbitrarily close to

1991 Mathematics Subject Classification. 20C18.
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while Andy Magid was Lady Davis Fellow and Visiting Professor at the Technion-Israel Institute
of Technology, whose support is gratefully acknowledged.
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4 ELI ALJADEFF AND ANDY R. MAGID

it, call called deformable. This notion of deformation is, by definition, geometric,
but it turns out that it also has a completely algebraic description: a representation
po: T — GL, (k) is deformable if it lifts non-trivially to p; : T — GL,,(k[[t]]). Such
a lift exists if and only if for every level a there are liftings p, : T — G L, (k[t]/t**!)
compatible with p, and each other.

Extending representations of the finitely generated group I to level a, or from
level a to level a + 7, is analogous to extending modular representations of the
finite group F from Z/p to Z/p°, or from Z/p® to Z/p®*": in both cases the
obstruction lies in an appropriate H? of T or G. Maranda's Theorem for finite
groups exploits the fact that H2(G,-) is annihilated by a power of p depending
only on G to show that a modular representation which extends to a sufficiently
high level, again depending only on G, can be lifted to representation to Zp. One
of our main motivations for undertaking this investigation was to look at whether
such a “Maranda-type” theorem holds for deformations of representations of finitely
generated groups, namely whether there is a level a, depending only on the group I
and (possibly) the integer n , such that all simple representations po : I' — G Ly (k)
which extend to level a have a non-trivial deformation.

In section four below, we analyze the cohomological foundations of such a the-
orem, and in section five we establish such a theorem for the special case of a
nilpotent by linearly reductive group.

To prepare for the subsequent planned publications, and for the convenience of
readers, much of this paper is devoted to exposition and background. We have tried
to make it self-contained.

A general reference for the basic facts to be cited in this section, and for other
information about representation varieties, is [LM1]. Also, the expository article
[M2] additionally explains deformations.

We now establish conventions and notations:
Throughout, T' denotes a finitely generated group with presentation

:<Il ..... 1‘[1|Sa aEA).
An n—dimensional representation of I' is a homomorphism
p:T — GL,(k)

and we denote the set of all such R,,(I') and call it the variety of representations of
T of degree n. It is indeed a variety: we can identify R, (T') with the d-tuples (A))
of elements of GL, (k) satisfying s,(A;,...,A,) = I, for all a € A. One can also
view R,(T') as the k points of the scheme Hom(T',GL,(-)). We denote this scheme
by Rn(T).

For example, if T is the free group on d generators F,, we have

R.(Fy) = GL, (k).

Both variety and scheme of representations are affine; we denote their respective
coordinate rings A,(T) (= k[R.(T)]) and A, (T) (= k[R.(T)}). The matrix coor-
dinate functions a:?j, where :r:] (p) is the i, j entry of p(v) clearly belong to A, (1),
and in fact generate it as a k algebra.
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The quotient of A, (I') by its nilradical is isomorphic to A, (I'). and this nilradical
can be non zero.
There is a representation

P:T — GL, (A, ()
which is universal with respect to representations
p: I - GL,(B)

in commutative k algebras B: for any such p there is a unique k algebra homomor-
phism f, : A, (') — B such that p = GL,(f,) o P.
There is a representation

P:T - GL,(A,(T))

which has a similar universal property with respect to representations in reduced
commutative k algebras.

We can apply this universal property to a representation p € R,(I'). Then there
is a unique homomorphism f, : A, (I') — C such that p = GL,(f,) o P; the kernel
M, of f, is a maximal ideal and the corresponding point in the variety R, (I") is p
itself. When p is understood from context, we can denote M, just by M alone.

More generally, if F is any closed affine subset of R,(I'). the canonical map
An(T) — k[F) produces, on composition with P. a representation

Pr:T' - GL,(A,(T)) — GL,,(JC[F]))

which has the property that Pp(7)(p) = p(y) for p € F and y € I".

Two representations p and p’ in R, (I") are equivalent (isomorphic) if there is
A € GL,(k) with A~'pA = p’. Since scalar matrices act trivially, this conjugation
action defines an action of PGLy(k) = GL,(k)/k* on R,(T): we denote the orbit
of p under the action by O(p). (Thus O(p) is the isomorphism class of p.) Every
orbit O(p) is of course a quasi-affine subvariety of R, (T'). It is closed exactly when
p is semisimple and has trivial PG L, (k) stabilizer exactly when p is simple.

The closure of the orbit of a representation p contains its “semi-simplification”
pss (in module terms. the direct sum of the quotients in a composition series of
p). There are GL, invariant functions (characters) which separate non-isomorphic
semi-simple representations. It follows that orbits of semi-simple representations are
closed. and hence that every closed orbit is the class of a semi-simple representation.
We denote R, (I')//GL, by S5,(I'); by the above 55,(T') parameterizes the classes
of semi-simple representations and we can describe the map R,(T) — SS,(T) as
p > [pss), using [-] to stand for isomorphism class.

A representation p € R,(I') is simple if and only if its image spans M, (k),
and it can be seen from this characterization that the subset R, ([)® of simple
representations forms an open subvariety of R,,(I'): R,(')* is covered by affine open
GL, stable subsets given by the non-vanishing of certain determinants asserting
that a particular set of elements {p(7;)} form a basis of M, (k)). Thus we obtain a
geometric quotient variety

R,(T)* — R, (I')?/PGL,(C) = 5,(I)
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where the quotient map is locally trivial for the étale topology. The points of
S, (I') correspond to the equivalence classes of simple representations. the class of
the simple representation p being denoted [p]. The fibre over [p] is the orbit O(p).

We will focus primarily on simple representations in this work. We have al-
ready noted that isomorphism classes semi-simple representations are separated by
characters, which are global invariant functions. For simple representations, the ar-
gument for this is elementary and we present it here, beginning with the definition
of character.

Definition. Let p € R,(T) be a representation. Then x(p) : I — k by v —
Trace(p(7y)) is the character of p.

Note that y(p) is constant on the orbit O(p). Now we can show that simple
representations are determined by their characters:

Proposition. Let p; and py in R, (I')" be simple representations such that x(p1) =
x(p2). Then p; and py are isomorphic.

Proof. We use P, to denote the k algebra homomorphism k') — M, (k) from the
group algebra of I' to the matrix ring by oa,vy ca,p(7). This is a surjective map
since p; is simple. Let I; be its kernel. Suppose I} = I, and denote this common
kernel I. Then using the maps induced from the P; we have k algebra isomorphisms
M, (k) — k[[)/I — M,(k). The composite, being a k algebra automorphism of
M, (k), must be given by conjugation by some A € GL,(k) and this 4 produces
an isomorphism of p; with p;. So to prove the proposition it will be enough to
show that representations with the same character have the same kernel ideal. For
this, we fix a single simple representation p € R, (I')* with corresponding algebra
homomorphism P and kernel ideal I

Then a = Xa,y € I; that is. P(a) = 0. if and only if Trace(P(a)B) = 0 for all
B € M, (k). Since p(T') spans AL, (k). it is enough to take B € p(T'). so that a € [
if and only if 0 = Trace(P(a)p(7)) = La,x(p){(77) for all 7 € T.

It is clear from this formula that if two simple representations have the same
character then they have the same kernel ideal and hence are isomorphic.

We use characters to construct functions on R, (T) as follows: for each v € T
let x, : Ry(I') — k be given by p — v(p)(7). It is clear that the functions x,
belong to A, (') (they are sums of matrix coordinate functions) and that they are
GL,(k) invariant and hence belong to k[SS.(I')]. Moreover, their restriction to
S,,(T) separates points, as the proposition shows.

Unlike the situation for representation varieties. the geometry of the varieties
of isomorphism classes of semi-simple or simple representations of the free group
Fy are not known: SS,(F,). for example, is the variety of closed simultaneous
conjugacy classes of d tuples of invertible matrices.

GEOMETRIC AND FORMAL DEFORMATIONS

Definition. A representation p € R, (T) is called rigid if representations close to
p in R, () are isomorphic to it. More precisely. p is rigid if the orbit O(p) contains
an open set in R, ('), and hence is open. A representation which is not rigid is
deformable.
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A simple representation p. whose orbit is then closed. is then rigid if and only if
[p] is an isolated point of S, (I'). So a simple representation p deforms if and only if
[p] is not an isolated point: that is. if and only if there is a curve ' C S,,(I') passing
through [p].

So suppose p is a deformable simple representation. We are going to see first
the geometric significance for R, (I') of such a curve . By selecting an irreducible
component of ' containing [p]. we can assume that (7 is irreducible. Let U be
an affine open G'L, (k) stable subset of R, (I')" containing p of the sort considered
above: U is the set of representations p’ in R, (I} where

s(p’) = det([Trace(p’(7:3,)])

doesn’t vanish. where {p(4;)} is a & basis of Al (k).

Then k[U] = A, (I'){s” '] and. since s is GL,, invariant. we also have that the
image V of U in S,,(I') is affine with k[V'] = k[U/]%" . Let C also denote the affine
curve ('NV. Let F be the inverse image of (" in R, (I')* and let D be an irreducible
affine curve in /' which contains p and whose image in ' is not a point. (Note that
F is irreducible and affine. so any irreducible curve containing both p and a point
not in O(p) works.) The image of D in (" is then cofinite in (. so that the image
contains an affine open subset to which p belongs. We replace ' by this affine open
subset and D by its intersection with the inverse image in R, (I')" of C.

In this setup. then we have. for the deformable representation p. an irreducible
closed affine curve D in R, (I')*. containing p. and such that the image ' of D in
S,(T) is an irreducible closed affine curve containing [p].

Corresponding to D we have the representation Pp : I' — GL, (k[D]). For
d € D. we will use pg to denote d. so pq(7) = Pn(1)(d). and we will further denote
p. as an element of D. by 0. so that p = p;,. For the corresponding characters Y(pa),
we have. in the obvious notation. that \(ps) = \(Pp)(d). The fact that the image
C of D is not a point then can be phrased as saying that the characters y(pq) are
not all the same. which is equivalent to the assertion that \(Fp)(I') is not a subset
of k.

We call this situation a geometric deformation of p:

Definition. Let p € R, (I')*. A geometric deformation of p is a embedding d — py
of an irreducible affine curve D with base point 0 in R, (T')* such that py = p. The
deformation is non-trivial if the map d — y(py4) is non-constant.

Our discussion above shows that deformable representations have non-trivial
geometric deformations. The converse is obvious, and so we have

Proposition. A simple representation is deformable if and only if it has a non-
trivial geometric deformation.

We resume the discussion with the same notation. Let Af, be the maximal ideal
of k[D] corresponding to p. Since D is irreducible. k[D] is an integral domain. Its
normalization E is the irreducible affine curve whose coordinate ring k[E] is the
integral closure of k[D] in its quotient field (D). Let A be a maximal ideal of
k[E)] lving over M,. E is nonsingular and the completion of k[E] at M is a formal
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power series algebra k{{t]] in any local generator of Af. The k algebra injections
k[D] — k[E] — k[[t]] give. upon composition with Pp. a representation

pe : T — GL,(K[{t]])

such that p, = p (mod t). Siuce. in the obvious notation. x(p;) = x(Pp), we
also have that v(p;)(I') is not a subset of k.
We call this situation a formal deformation of p:

Definition. Let p € R, (')*. A formal deformation of p is a representation p; :
I' — GL, (k[[t]) over formal power series such that the residual representation p
given by setting t = 0 coincides with p. The deformation is non-trivial if x(p;) is
non-constant. The non-triviality degree of p; is the smallest positive integer m such
that there is v € I" so that the coefficient of ¢ in x(p;)(y) is non-zero.

A trivial deformation of p would be one in which x(p;) is constant. There always
exists a trivial deformation of p: since GL,(k) < GL, (k[[t]]), we can simply set
pt = p. More generally, we could take this deformation and follow it by conjugation
by an element of GL, (k[[t]]). We will show below that these are the only trivial
deformations.

Our discussion so far shows that representations with geometric deformations
have formal deformations. We will also establish the converse:

Theorem. A simple representation has a non-trivial formal deformation if and
only if it has a geometric deformation.

Proof. We need to prove “only if". So suppose p has a formal deformation p; :
I — GL,(k[[t]]). Because of the universal property of P. p; comes from P and a
k algebra map 4, (T) — k[[t]]l. To simplify notation, we now write A for A, (D)
and M for M,. Since p; goes to p when t = 0, the image of M, lands in tk[t]).
Thus the k algebra map A — k|[t]] factors through A;. We write Py for the
composit,e I' - GL,(4) — GL,(Ay) and f for the map Ay — k[[#]], so that

= GL,{f) o Py. Suppose further that p, is nontrivial. Then there is 7 erl
such that Trace(p(7)) ¢ k. Thus f(Trace(Pir(7))) ¢ k. so Trace(Pp (v ) ¢ k.
Earlier, we introduced the notation y. for Trace(P(v)) as a function on Rn(I‘).
Thus we see that the existence of a non-trivial formal deformation p; of p implies
the existence on a y, non-constant in Ay;. Now we want to show that this implies
that p geometrically deforms.

If, on the contrary, p is rigid. then O(p) is open as well as closed. and hence is
an irreducible and connected component of R, (I'). Then Aj; is an integral domain
whose quotient field is the function field £(O(p)). PGL, acts on this field with
field of invariants k, so the invariant function y, would be constant in k(O(p)) and
hence in Ay;. This contradiction implies that p is not rigid and completes the proof
of the theorem.

Because of the theorem. we may unambiguously refer to representations as “de-
formable” to mean both geometrically and non-trivially formally deformable.
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From a formal deformation p; : I' — GL,(k{[t]]) of a simple representation p we
can produce a consistent family of representations

pi: T — GL, (k[t]/ ("))

from the k algebra surjections k[[t]] — k[t]/(t'7!). Each of these representations
reduces to the original p when ¢ = 0. and. for i > j. p; reduces to p; modulo 2R
Conversely, if we have such a consistent family then their inverse limit is a formal
deformation of p. We introduce the following terminology for such representations:

Definition. Let p € R,(I')*. A lfting of p to level i is a representation o : I' —
GL, (k[t]/ti*") over such that the residual representation o¢ given by setting t =0
coincides with p. The lifting is non-trivial if the character x(o) is non-constant.
The non-triviality degree of o is the smallest positive integer m such that there is
~ € T so that the coefficient of t"" in \(o)(7) is non-zero.

A lifting is trivial if its character is constant. The following proposition will
allow us to identify the trivial liftings.

Proposition. Let A be a local k algebra with maximal ideal M and residue field k,

and let 0 : T — GL,(A) be such that the residual representation p : I' — GL, (k)

is simple. Suppose that Trace(c(I')) C k. Then there is a € GL,(A) such that
—1

o =apa”".

Proof. Using the inclusion ¥ C A we regard both p and o as maps from T to
GL,(A). We consider the two k algebra homomorphisms f.g : k) — M,(A)
coming from p and o respectively. We are going to show that the kernels I and J
of f and g are equal.

Suppose this has been done. Because p is irreducible. the image of f is M, (k),
which freely generates M, (A) as A module. Let B denote the image ofg. If I =1J,
M,,(k) and B are isomorphic. Under the composition

K[T] — M, (A) — A/M 24 M, (A) = M, (F)

the images of f and g coincide. so that B generates M, (A) as A module as well.
Thus the isomorphism M, (k) — B extends to an A automorphism

M, (A) = A sy M, (k) = Ay B =M, (A)

which is inner since A is local [B1.5.3. p.74]. If the inner automorphism is given
by conjugation by a € GL,(A). then it follows that aga~! = f. and hence the
proposition results.

Next we note that for anyv z € k[I']. since f(z) and g(z) agree modulo M, so do
Trace(g(z)) and Trace(f(z)). Since both traces belong to k. the traces coincide in
A.

It remains to show that I and J coincide. To begin. we note that for X € M, (A),
X = 0 if and only if Trace(XY) = 0 for all ¥ € A, (k). More precisely. if IV;; €
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M, (k) has 1 in the 7, j position and 0 elsewhere then Trace(X E;;) is the j,i entry
of X.

As noted above. the image B of g. as well as the image M, (k) of f. both generate
M, (A) as an A module. Since the trace is linear, this implies that X = 0 if and
only if Trace(XY) =0 for all Y € B as well.

Thus g(z) = 0 if and only if Trace(g(x)g(y)) = 0 for all y € k[I'], and f(x) =0
if and only if Trace(f(z)f(y)) = 0 for all y € k[['] as well. But Trace(f(x)f(y)) =
Trace( f(zy)) = Trace(g(zy)) = Trace(g(x)g(y)). and it follows that the kernels of
f and g are equal.

Suppose that p, is a lifting of the simple representation p = py to level a > 1.
We say that p, eztends to level a + 1 if there is a lifting p,+1 of p which reduces to
Pa modulo ta+1 If there is no such p,4;. we say that p, is obstructed. We can also
talk about extensions of more than a single level at a time.

We are going to see that extension and obstruction can have interpretations in
group cohomology. Extending a lifting p, to level b = a + r means going from
a representation I — GL,(k[t]/t*"") to a representation I' — GL, (k[t]/t**)
which reduces to it modulo t**!. The kernel of the surjection GL,(k[t]/t**!) —
GL, (k[t]/t+") is T+t M, (k[t]/t**"). If @ > r, this is an abelian group, isomor-
phic to the vector space t¢* 1AL, (k[t]/t**!). Also

VA, (K860 = AL (2R /60,

As a k[t] module, k[t]/¢" is isomorphic to t** k[t]/t**!. the isomorphism being given

by multiplication by t**'. So t**'AL, (k[t]/t**") is isomorphic to M, (k[t]/t").
Since matrices over k[t] modulo the ¢ power of ¢ are uniquely representable as

sums of powers of t up to ¢ — 1 times matrices over k. this last isomorphism can be

made explicit.
In summary, we have the following group extension exact sequence:

Fora>r > 1,

0 — M, (k[t]/t") — GL,(k[t}/t"""H") — GL,(k[t)/t*) — 1
r—1
A=Y "HA = T Ay T AL A€ M(R).
=0
As with all group extensions with abelian kernel, the above extension corre-
sponds to a certain cocycle in ¢, € Z2(GL,(k[t)/teTh), M, (k[t]/t")) (which we
will make explicit shortly). A representation p, : I' — GL,(k[t]/t**") extends
to GLy(k[t]/t*" 1) if and only if the cocycle ¢q4.r 0 pa € Z*(T, M, (k[t]/t") is a

coboundary.
For later use, we recall explicitly how the cocycle cq.r 0 pa arises. For notational

simplicity, we will write
0-M-F—-G-—1

for the sequence

0 — M, (k[t)/t") — GLu(K[()/17 ") = GLu(k[A)/1°71) = 1
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and write f : M — E for M, (k[t]/t") — GL,(k[t]/t""""!') and p: T — G for p,.
Then from the sequence and p we have the sequence

0—-M-Exqgl =T =1

where A € A maps to (f(A).e) and (A.4) € E x¢; [ maps to 7. Extending p to
is the same as finding a homomorphic section I' — E x¢ I

The extension problem depends on the structure of Af,, (k[t]/t") as a I’ module, a
topic to which we will turn below. First. we want to make the cocycle ¢, . explicit.
To do so, it is first convenient to write the group GL, (k[t]/t**!) in a different form.

We let U, (k[t]/t!) = I + tAL, (k[t]/t“*!). a subgroup of GL, (k[t]/t**"). We
also consider GL, (k) as a subgroup of GL, (k[t]/t**'} in the obvious way. Then
there is an isomorphism:

U, ([ )G Ly (k) — GL, (K[t} /1)

(I+A4=) t'4)(B)~ D HAB ALBEM,/(k). Ay =1,

=0 =0

expressing G L, (k[t]/t*7") as a semi-direct product.
Then we can define a section from GL, (k{t]/t"*") = U, (k[t]/t*" )G L, (k) to
CL,,( [ ]/,(H—r +l) — U,,(k[t]/i‘” H")GL,,(]\‘) b}'

Sar Un(k[t]/t""HGL, (k) — U, (k[t)/t* T HGL, (k)

-t ANB) = (D_t'AN(B)

i=0 =0

We define ¢, ,(X.Y) € A, (k[t]/t") so that
Sar (X80, (Y)s,, (XY) = =t e, (XY

This also savs that s, (X)s.,(Y) =t e, (XY )5, (XY).

We can write X = UC and ¥ = VD vshere U.V e U, (kjt]/t""!) and C,D €
GL, (k). Then XY = (U UCVYCD. where 'V = CVC~ L V\rltmg s for s, ., and
¢ for ¢, , we then have s(X) = s(U)C. s(Y) = s(VYD. Cs(V) = s(“V). and
s(XY) = s(UV)CD so that s(X)s(Y) = s s(VYCD = s(U)s(“V)CD and

hence

s(U)Cs(VYD(s(UV)CD)™!
= s([)s(CV)CD(CD) 's(UCv) !

n+1 (Y })

This says that
17 ey (UC VDY = 50, (U500 (CV)sa n(UCV)

and that ] )
50 ()50 (CV) = 1710, (UCV D)o (UCV).




