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THE duory of orthogonal polynomials is ofccnsum interest to
mathematicians and physicists because, after the simplest orthogonal
system - the trigonometrical - the system of orthogonal polynomuls
h the most simple. :

Oneofmemoalmezening. andfromthepointofvxewofapplica-
tion, the most important, problems of this theory is that of the condi-
tions of convergence of the expansion of a given function into a series:

of orthogonal pelynomials. To resolve this problem we must know the

. asymptotic properties of 0! nal polynomhls. i.e. their behaviour
- whentheorﬁermcremin tely,” The asymptotic formulae for "

* orthogonal polynomials in the general case were, found by G.Sz&go([5)
and S.N,Bemstcin iar.

‘ The first task of the present mououaph is to establish the proof of
. the asymptotic formulse ynder more general conditions than deter-

wmined by previous authors (in panlcuhz. under certain local condi-
.tions) :

In many cases, hawever. the existence of an uymptotic formula
4s not 28 important as the boundedness of the orthogonal system on the

. entire intervdl of orthogonality, or on a part of it : the pxoblem of the

conditions of this boundedness was first given by V.A.Stretkov {2]
- its solution is extremely important, for many suthors formulate d'leir
- results on the basis of "if the oxthogoml system is limited, thep ....".

Our second tuk is to find the conditions undex which a system of

27 ‘orthogonal polynomials is limited on the entl.re interval of orthogonal- -

ity or on’a part of it.

- Another still more general problem. wh.tch is of direct importance
in the study of infinite processes linked with orthogonal polynomials,
is to find the order of the growth of these polynomials as a function .
of their number, without assuming their boundedness - thk isthe .

- third task of this monograph.

. The numbers in square brzckets refet to the Rcferences, given at
- the end of the book. : ;
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3 ~ ~nomials and the ideas of V,AStclilgv. Bernstein, VI.Smirmov,

' polynomials, and in this the series are direct generalized power

* For the readers convenience we have, moreover, in the notes given = -

" POLYNOMIALS ORTHOGONAL ON CIRCLE

‘" We examine polynomials orthogonal on the unit circle and poly-

nomials orthogonal on a finite interval of the real axis, :
' In Chapters I and I we examine some properties of polynomials
orthogonal on the unit circumference necessary for future working,

" and in doing so we use the results of our earlier monograph [1], but . '

introduce new proofs for all the propositions, so that this monograph -
can be read independently of the earlier one; we take advantage of 2
the opportunity to simplify some of the proofs. s et

Chapter III deals with inequalities on the entire circle; and
Chapter IV with local inequalities. - Using the inequalities found we
conclude, in Chapter V, the conditions under which asymptotic’
formulae on the entire circle or on some of its arc are justified. -

" Chapter VI.deals with the general theory of series by orthogonal?'*

series; it is possible to generalize some classical properties of power -
series to the case of series of orthogonal polynomials.

Chapter VII examines the conditions necessary for the convergence = -
of the Fourler-Chebyshev expansions of the given function. In par-
ticular we introduce the theorem of divergence, which links the con-
vergence of the expansions of the given function into a Fourier-
Chebyshev series and a Maclaurin series. e

Chapter VIII studies an orthogonal system in terms not of the
conditions imposed on the measure function but of its parameters. =~ .
We deal with this question because in the very recent past M.G.Krein :
obtained extremely interesting, and from the point of view of their
application extremely important, results which can be viewed as

direct analogues of the results given in this Chapter. - :

We examine the theory of polynomials orthogonal on the unit °

- circumference in such detall because with the help of a simple

formula they can be linked with polynomials orthogonal on the
finite interval of a real axis. :

Using this link we easily obtain inequalities and asymptotic
formulae for polynomials orthogonal on the - interval [ - 1, ¢ 1]
from the corresponding results for polynomials orthogonal on the
unit circle. This question is dealt with in Chapter X. .

In view of the fact that in many cases we obtained several condi-
tions close to one another several Tables are given at the end of the .
book to enable the main results to be better reviewed and compared.

at the end of the book, given full formulation of ‘all the theorems
used in the text. : Yo

The present monograph is an attempt to develop and t0 apply to
the solution of importang probleéms the theorems of orthogonal poly-
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.'A.N.l(olmogerov. N”.I.Akhieret. and Krein. Vand a mxmber qf{oreim-
scientists- - primarily Szégh, P. Erdos, P.Turan, and G.Freud. J
how far we were successful in solving nhe problem ‘we set ourselves,
'we cannot judge; we will, in any case, be extrerheiy rec‘eptive

= crmchms and ‘comiment of any kind.

We comidct ita pleasant duty to express our deep thw.ks to
NJ.Akhiezer, who read the manuscript of this book with gtel
: and who made & number of valmbie comments. 5 :
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CHAPTER I

SOME PROPERTIES OF POLYNOMIALS ORTHOGONAL ON
£ THE UNIT CIRCLE e

\ " Let the polynomials {¢s (2)} be orthofiormal with respect to the -
% measuregap(?i)yz:heum?cuclle |2} =1, i.é. the following con-
ditiomaresamﬁe,d: O .
\ 1 g : : = E ¥ 09 n * n, . %
ﬂf?n(e“)?mze“.)ds(o);{ I, m==m, 1.1
B : v(?nA(z)zoanz.f{"'-‘-: ¢n>0’ (u=ou 102, 520 &
 where o(0) is bounded and non-decreasing over the interval [0, 2. -
. The orthogonality conditions are readily seen to define an
system apart from a constant factor, which must have unit modulus

| _ because of thé normality conditions: and finally, the conditions .
@, >0 enable the system to be defined uinqgely. We shall assume

that the function i’l’ o (8) characterizes a certain mass disﬁibuiion
i n ; ;
over the interval [0, 2], the mass appearing on the set ¢ {0, 2x]
 being equal t0 oL [ do(9). The density of the mas disribasion

i will be regarded u.the derivative of a function p{8) o’ (6&:—- p(o) ;

. existing almost everywhere in [0, 2=} if the ass) ab.o-
lutely continuous in [0, 2x], we shall call p(0) the welght. If
_a(0) has a discontinuity at a point 0o the quantity p ==

- m _-%’(o(ﬂ,+0)——e'(ﬂo~—0)} will be called the concentra-

. ted mass. We shall assume thats(9)has an {nfinite set of growth

b ','rotn(n.)}dnce otherwise we cannot form an infinite set of polynomials

Pn(2)). : & S

The general theory of such polynomiais in the case of an absolu-
~ tely continuous function 4 (0) has been developed by Szego [1]. [5]

" and Smimov [11 [3]. The general case has been discussed by -
ezer and Krein [1] and more recently by the present author (1], {31
who has pointed to a connection with the trigonometric problem of

. _ moments, the theory of psendo-positive and bounded functions and s

on. TR ,F\
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e pox.momm.s Owi‘ﬁocomi ON CIRCLE

',1.1 We shall ﬁm consider some

nomiah{cp,, (2)}, needed later on.
(1) The following relationships hold® :

dn?nq—g (2) =, 4129,

a”qa_;_;l(_Z) =a, .9 @)+ Port (0)z9,(2)
» (u=0, 1,22, N R ‘J :
vn(Z)—z“?,.( ) ?7,(0)='=a... (n=0, L2..).02 -

where

Proof We put

v..<z>-4a..w_ 2 W, (& )

Algebraic properties of the poly-

@+ %Q (©) %3 (2), l " : }1.2)‘

e

- k=0

- on mulﬂplymg both sides by qik (z), setting R e“ and integnttng.

we find for & = 0. | e e

alx

- f 9 (M) }’:’—,.‘%?.do (0)—-— f oy (e © =

- on inttodncing the notation

Juesi f e“cpk(e“)dow)-u. (k=go,;f1. 2.0 0
(i} iarse

_we get : _ A
P =—ay, 22 z" ‘),, lm( )
i k=0
whence - ©.
Zz

,::1-1 zv:n : " ‘P" (z)

‘We find the A, iwsett.insz._.- e e

' ¥+t (0)——--1 B Ay = __9n+1(0)- (14)

T+l . 8 Bninty

vhcnce (1.2) follows: to obtain (1.2 ) we replace z by l and put

to the conjugate quantities, °
(2) The following reh

e =g, OF

. We prove this by multiplying
and imegmting s

tions}:ip h_ol-ds“:

(=<0, 1,9 . 05

both sides of(l .2) by z-ﬂ-1 7=

-

* Cf. Szegd [1]§ 11.4: Geronimus [1]. 83.

»Cf, Geronimus [1] § 4. .

- (1.2°) S
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' SOME PROPERTIES

2n i & i el 2k

;:‘/'e—i(nn) O0n i1 (e‘°) dc(ﬁ) —"—*—‘/e*’*"ecén (e“)da-(ﬁ)}-—}—
. 0 : »

0 2r
L A0 [,
Using (1 3) and (1.4) we then obtain

ap an+1 0 )\ __“n+1 |‘Pn+1 (0),|2>.
“‘a"—;‘l ; + cPn+1( ) : Ftair:

(3) The formal Fonri.er-chebyshev expansion
00 ———
L ‘ 0 )
o (6) ~ Px+1(0) ox (e).

ara
: o kOk+1
corresponds to the function §,(0) =¢—1.

For we have from (1.3), (1.4): _
e 000000

i%:_. e'—“‘?k(eia-) ds(8) “—_‘)"‘ B akak+1 4
0 y .
the sum x+1(0) 2 1 fika e
A 2 = —— — ‘ g
E| % 2= ax 0z 41 f : a;-&-l‘ e (1.6°)

being easily found by using (1 5).
(4) The Christoffel Darboux formula is vahd‘

9, («vc)w,l (y)—xw,, (x) <e,, (y)
1— xy

mmm=2wm%m

k=0

=¢;+‘1(x)'?:,+1(y) so,,H(x)«p,,H(y)
l-—xy ‘

To prove thi;. we find the sum

P (£) 9y () — X591y () 9. (9)
] g & + Prns1 (%) Py (J’) (1.7

We ‘find from (1.2), (1.2'), and (1 .5) that
“m+1x‘9m (x) = UnPmi1(X) — Pmy1 (0) ‘Pm (%),
,,,+1(Pm () =@,y ()—¢, .  ©) X (05

on eliminating 9y, (¥) and ¥, (X), with the aid of these expressions,
L we easily find by using (1.2) and (1.5) that (1.7") is equal to,

(1.8)

* Cf.Szegs, 1, §11.4: Geronimus, 1, § 8.

(1.8)"




POLYNOMIALS ORTHOGONAL ON CIRCLE

xw,,,ﬂ (X) sy (y)

€1.2') and (1.5).

ol ks | ?mJ.l(x)?m«'.j.(y)
: o w by
we pass to the second form of formula (1.7). by makmg use of (1.2),
(5) The polynomxal q:,,(z) is 'given by the formula‘ _
(=0, 1, 9 .
L ) :
3

(1.10)

o

2 0t (2) =K (2 0)—— 2 o (2) 9z (0),

We prove ‘this by setting x =2, y—‘—O in (1.7).
(6) The following inequality applies **:
2n
3 1./"1(;"(9{8) lz i 1 :
Ynle7) Fds (o
Gy (29) a0 > R"(ZO,ZD)' i

o
where the.notation G, (2) will always be used for an arbitrary po.ly-
2 @iy (2) and’applying the

nomial of degree not exceeding T
n

We prove this by putting G, (2)
Cauchy- Bunyakovskii inequality :
; R ML e
<Zlal: 2o

nES
X arex (2)
k=0

2n

|G (20) 2=
/.IG (e“’) 12 ds (‘0) - K, (Zo, 20)

- 0
The sign of equality may easily be seen to apply for the polynomial
Nagrr 0 A0S SRS i .10
a, (z)_eKn(ZoZo) [l 1 ¢ )
f [+ 2 Bt do<e> (L1

(7) The inequality
1 -

K (0 0)
being the extremal polynomlal

1
—
%n

pplies, —I— w?*.(z)
This is ﬂmpIy proved by setting 2, =10 in (1.10),

ok Szegu 1] 871
* Cf, Szego, {21 § .,'
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~(8) All t!m roou of the polynomial ¢, (2 le in '
the domainlz!< Fozwehavefmm(l 1) for Jz <1

lon @ —|2v, ()] <In(t)l’ ‘

- 2<K, (@ z)‘==2.l' ?x_(z)l"—'-‘ T—(zp

gy L

= | e

~and Menﬂy?:(z)#o with Iz[ < 1, since

e > d(l—|zm Jz|<l 0 dazy
 the absence of zeros of 94(2) on the circle 1z]—lwﬂlbepmved

‘below,

(9) If we lntrodnce the second oxder polynomiah

@)= 2:% z“l@. (e — ga @ do 1),

co=~§;fd.°(9)- ' @=0, 1, ...)

2) ‘
the fnnctlomi:(—— ﬁnve the same Maclaurin co-

2 (2)
'efficlents fn {z*)¢ as the functions _ &
e S Tl
F,<z>-:—‘— :+’dc<e). Tefel s
- For we have- 2=
: c“+z el ] ]
co%(z)——--ﬁ 30 lﬂvu(e )—-v,,(z)] d°(°)—— (1.18)

| e O~ f %Jf-fv.(e*')dow),
bence
GIE (D) 9 (@~ (2)] =

E
= ’ Ia+22m "‘“}9,(e")da(ﬂ)—-. :

0 l ooy

. 22»-,; f e-**ﬂq»,, e*}dow)—-owﬂ). Izl <1
ksx : ; (1.15")

: ~

K /

% -(1213)' - |
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' Sincetp (2)#0in the domain Iz]\l Wegetftom(l.ls 2.
3 3 »

Pn (2) :

- An expression that wiu be useful later on follom from (1.15) and -
a2 )wnhlzl e d
m - f‘e“’—l—z

oI ?a(2) | 2n

4',. @
¢ ()

1 F (2) —

Vco“o:}?jr:)(l l/-Q:: fl(p,,(e“’)lzda(ﬁ)< V2rﬂ :

(l—r)z

(10) The relationship %

| & (e“)ldo O< .

(16 '

C°{¢ (z)(Pﬂ(z)—i_(Pn(z)q’ (Z)]—Qz” (n_..O i 2 ) (1.1?) St

holds; in parucular

com{“’”("“) } o (n4_=o, b % e NS :

7@ [

We prove this by using the relationships i-

3

¢ [F (2) 9} () —4;, (z)] z" f S sy = $a Q) ds (6),

(=i, Yoag

I cOJF(z)q»,.<z>+q»,,(zn— f ‘+‘%('>d=ea)

following from (1.13) and {1.15). We find from these that
G | Aites

lt, (Z)“’n(‘”“?»(z)%(z)l—zln o, z)ds(ﬂ), 4

where. or the basis of (1,2") and (1 )
2, 2= ?n(C) p@—2", e, (z)—— :

(;;
= <P,, © 9, (z)—‘—z"k?,, (t-)ﬁp,. (z) ?,.(C) Pa (2)
. ® It follows from (1.17) that vn(z)q&l) with Izl-—-l

b

SR i




'rp‘tmo,u"x.n.s ORTHOGONAL ON c'mcm

‘-—""“z"q»n() (z)+"’"“ ”2 AOn@.

=0

We have f\mher' i .

) ("—‘T"'—“C"EI - eta, @i 2
we now find, 01:' the basis of (1.3), (1), (1.2°):
S “”2 7 ()3 0) =
0
. ! 2 et e
e l.+z’§o<p;‘(z)§—b/-f- )dc(e)__l-_zzq; (g Bt o

S f i) 90 }22432_@.'

gt 7 ay .

k=0
whence (1.17) follnws.

(11) We have with k 0% B : el “ o
o—ikd de .| f Y (1.20)
=— [ e~bds 6) =¢
f l? (e"’)lz () &k i
By property (9):
¢ 2 ¢ L
v__{.Q__ ‘l’:;( )==_0_+cl + .ozt t 2 }‘n)
A (z) ' k=n+41 .
the series being convergent in the domain 21 <L l,hence we have,
"on putting ¢_x = [ the equatlon ; ;
Yn (elff) } 1 'n_’
0, :T\\\[ B — . P == - > s kG (n\ ).!1
70! 9 (ew) I‘P'n (ew) ,2 k; Cpe + i /; R( g1
from which (1.20) follows. :
Thus, 1f5(9)1s replaced by/ t ,m> » all the

‘moments{ck}o, and therefore all the polynomnals
{¢x(2)}0 remain unchanged.

(12) Faunction (1 14)has a positive real part inside
the élrcle!z|§ 1 almost everywhere on the circlg

\




B * ' SOME PROPERTIES

z== e 0.< 0 0 2n, there'exist the radial boundary

values X
lim F(re®®) = F(e”), lim EHF (re"') =—— p(B) (1.21)
ir»>1-0 r>1-0

or more precuely. at all points 90 at which there
exists the first order generalized symmetric deriva-
tive - i
. 6 (0p+4h) —a (6p— k) el %
“ 6y (0) = lim * : ; i ST
Tl 5% 1

we have . : ; i
lim RF (re“’u)=-—a(1) (00)- (121" ) =

r>1-0

For the real part of the function F (€% is in fact given by the
Poisson-Stieltjes integral

2x

1 1--r2
%ﬁF(re“”)——— 1—2r cos (00—0)+r2d°(6) r<l (ien)
0

with a non- decreasing function ¢ (0) and is therefore positive wnh
r < 1; consequently by Smirmov's theorem® the function F (2)
belongs to class H;, % < 1and thus has radial boundary values al-
most everywhere on the circle 12l=

Statement (1.21") follows from the familiar results regarding the
summation of Fourier-Stieltjes series by the Abel-Poisson method.***

1.2. We now consider some limi-ting relationships. valid as n — 00.

We introduce the space Ly (0, 2%) of complex-valued periodie
functions: f (0) with the usual definition of norm

s — ]/Q,cflf(onfdow)«@ >0, a2

Af do (0) = db, the superscnpt " will be omitted for the space. e ' k‘
18. The finite or infinite limit . x i
lim'a, =@ < .00; ; (1.24)
n>w : by

v

* Cf Smirnov [3], Cf. also Privalov - [1]. Ch I, 4.5.
** Cf. Privalov [1], Ch.1I, 1.1, 2.1 !
*+ Cf, Zygmund [1],88 2.14, 3.44 : : :
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exists. It is sufficient to observe hete that in accordance with (15)
: _0<'an<‘an+1' 7 i B s .
(14) We have for the function ‘%(0).=e“’“

o0 ; . . - l o

PTG ,
PHIED) el

; i*=0-> e a: :az_ o e (1.25) \_", i

Pa+1(0)
“kﬂh-l._ e

; ; : 2, S e
=2 [ Iw®pd@ L,
where

S5 lim minjige (0) — Gy (M7 =L2>0. (25
n»co G'” it . ' Rt

a

(15) The following statements are equivalent: T

(a) the function a’-(9) is sl_amm-;lble. ie.

2r i A >

f ino’ (8) ds > — oo; . (1.28)

0 ) - S )
(b) the system of polynomials U=_{<p,,(e“)}:,°, and ' -

s0 also the system of powers !3‘7"}? is non-clos_ed

in L3; T

{c) the function ¢ (Ggse-“ cannot be approxi-
‘mated by polynomiaf; & the metric [] with any =
degree of accuracy e ; O :

_ (d) the finjte limit
ima,=a - . a.27n
i w0 = RS ;
exists:: :
(e) the series 2[%(3)]2 is convergent in the
; k=0 S
domain|z| < | extept at & single point:

. ' (f) there exists the sﬁ-bnequence{?; (?));bounded
< in[z{< 1*)ekcept at 3 single point.*”’ ;

" * The etlniulent:e of conditions (a) and (b) was shown by Kolmo-- = -~
~gorov (1], [2] and by Krein [1]. The condition of non- closedness - 2
of a system of orthogonal polynomials in the space L]  with
‘ra»i1 ; ::c lf:nndmbmkhlmzl {1} in‘t;ae case of ;rdmsomuty on
the unit circle; in general case of orthogonality on a Jordan
rectifiable contour the condition was discovered by the author {2]

G2 for r»1 and by Tumarkin [1] for 7 >0.

-



10 . ' SOMEPROPERTES

Supbosé that the system U is not closed, and therefore not com-

plete, in LS; - then there exists a function ¢ (6) € Ly, not equivalent

to zero and orthogonal to all the functions of system U,ie. we can
write 2r e . : .

[ @ eda® =0, k=0, 1, 2. a0

4 0 =, ~ = v =

On multiplying each of these integrals by z~*-1, |z| > 1 and

summing over &, we get : ;
e 2r

o~

e e I

L L el g s S OB

-EE 0 efﬂ A2
‘We introduce the notation

2 : 2 »
;] : ; o
M=o [ SEY. a@=c g @y O
since o 0 S : A . :
) 5 ; et 1 e 2 : s v :
??f""‘(?>'=-§;fl(P(e>!d=<ﬂ>_\<..u<puz-v“co< o0,

7 (B)is a function of bounded variation, - -

DRIEAS

The function A (Z) defined by (1.29)is analytic and regular inthe domain

| 2| < !; since it is given by an integral of the Cauchy- Stieltjes
gpiiel gl 29) and A (z)==0 in the domain z > 1, expression (1.29)

act a Cauchy-Stieltjes integral; thus A (2)EH,, |2|< 1 and®

almost everywhere in [0, 2] the boundary. values exist:
MeM) = Tim \(rei) =<' (B)=e- 05 (B)a’()),  (1.30)
r>1-0 . e

with the boundary function A (&%) satisfying *
2r

0. - ) ;
We find by using (1.30) that ln{ | go((e) {0’ (6)} €L, whence *

2 2% 2n z i
—oo < fInta’ (9) a0+ [n* (| ¢ @)’ (®) d0 +
0’ : e (o ;

2% < © 2= , i :
[ a0 [ [P O)) 8 <+ oo,
0 - (1} - % 3 T W

* Cf. Privalov [1], Ch.1l. §5.

2 S Ina, a>1, : | pe :
-° * Wehaveput Inta= 552 ~g=lna—Inta, .
s (] : P Hn‘ { b, 0<e<l, In"a=Ina V.J'n‘ a

P

»
X

; 2 2% : e : 4
fii?’l?‘(eio),de s s ek f A (e ][di < o0. 81y
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' POLYNOMIALS ORTHOGONAL ON CIRCLE'

:On the other hand, we have from, the conditions o’ (6) E L, oD E Ly

2n

fln+a’(9)a'ﬂ< fa (9)d6<—|——oo,

SEo

fln+{|<p(e)!2a (6)}d6’f!v<6>lzo a5 o G 4R 3

< fl\cp(a)lzdv(ﬂ)<+oo,

“and consequently ox
_ _—oo<fm 3 (e)de+f1n |(p(e)1zo (6)d6
Smce both terms are negative, we arrlve at the inequalities

_oo<f1n o (8) db, __Oo<f|nc(0)dﬂ<+oo

Now let (1.26) be given: we have from (1 «11):
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us ing the fact that the geometric mean of a function does not ex-
eed its arithmetic mean. we find that
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since ¢, (0) = @ hence, by (1.26),
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n->co Un
T whence (d) follows.

The equivalence of (c) and (d) follows fmm (1.25'): and (b) e
follows from (c). :

It follows from (1.12') that the sequence lon (@) is uniformly
bounded from below in the domain | 2| < r < I; by Montel's

‘hecrem * thiere exists a subsequence of polynomials {c?* (2)}»
“or which we have uniformly

See Montel [11 8§ 17.
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