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Preface

This book has evolved from a two-term graduate course in partial dif-
ferential equations which I have taught at Northeastern University many
times since 1980. The first term is intended to give the student a basic
and classical introduction to the subject, including first-order equations by
the method of characteristics and the linear second-order equations which
arise in mathematical physics: the wave equation, Laplace equation, and
heat equation. All of this material is more than adequately covered by
many textbooks which are readily available. The second term, however, is
intended to introduce the student to a wide variety of more modern meth-
ods, especially the use of functional analysis, which has characterized much
of the recent development .of partial differential equations. This latter ma-
terial is not as readily available, except in a number of specialized reference
books. This textbook is intended to bridge this gap by providing the stu-
dent with a basic introduction to the subject and an exposure to some of
the more modern methods. _

As with any other book on such a broad and diverse subject as partial
differential equations, I have had to make some difficult decisions concern-
ing content and exposition. I make no apologies for these decisions, but I do
acknowledge that other choices might have been made. For example, this
text begins with the method of characteristics and first-order equations;
although other texts often omit or slight this material in preference to the
treatment of second-order equations, I have chosen to include it, and even
emphasize its constructive aspects, because I feel it offers motivation and
insights which are valuable in the study of higher-order -equations. Indeed,
the method of characteristics leads naturally to the Cauchy problem for
higher-order equations, as well as the classification of second-order equa-
tions, which I treat in Chapter 2 (along with a discussion of generalized
solutions). Following this momentum, I decided to treat the wave equation
before Laplace’s equation, even though this causes the use of eigenfunctions
in a bounded domain to be delayed until the next chapter. Similarly, I have
chosen to treat the heat equation after the Laplace equation for reasons of
the maximum principle; of course, a bonus is that eigenfunction expansions
are available for the heat equation in a bounded domain. Other texts treat
these three second-order equations in different orders, and they all have
their own reasons for doing so.

Exposure to the use of functional analysis begins in Chapter 6 with a
rapid survey of the basic definitions and tools needed to study linear oper-
ators on Banach and Hilbert spaces. The Sobolev spaces are introduced as
early as possible, as are their application to obtain weak solutions of various
Dirichlet problems. This early application of Sobolev spaces establishes the
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w Preface

weak solution as a theme which recurs through much of remainder of the
book; it also emphasizes the usefulness of the functional analytic approach
before encountering the more subtle issues of weak convergence, continuous
imbeddings, and compactness.

The theme of weak solutions is picked up again in Chapter 7, in the
context of differential calculus on Banach spaces. The variational method
of finding a weak solution by optimizing a functional, possibly with con-
straints, is applied to several problems, including the eigenvalues of the
Laplacian. The forum of differential calculus also enables us to introduce,
at this point, the contraction mapping principle, the inverse and implicit
function theorems, a discussion of when they apply to Sobolev spaces, and
an application to the prescribed mean curvature equation.

The issue of the regularity of weak solutions is taken up in Chapter 8,
where the basic elliptic L2-estimates are obtained by Fourier analysis on
a torus, and transplantation to open domains. It is also natural, at this
point, to discuss maximum principles for elliptic operators, and then the
issues of uniqueness and solvability for linear elliptic equations.

Chapter 9 consists of “two additional methods.” The first of these, the
Schauder fixed point theory, is presented and then illustrated with its appli-
cation to the stationary Navier-Stokes equations; this application returns
us to our theme of weak solutions in Sobolev spaces, and also builds on
the discussion of the Stokes system in Chapter 6. The second “additional
method” is the use of semigroups of operators on a Banach space to describe
the dynamics of evolutionary partial differential equations. We first discuss
systems of ordinary differential equations as a finite-dimensional example;
this helps to motivate the ensuing discussion for partial differential equa-
tions, which is well-seasoned with examples. This treatment of semigroups
is very brief, but serves the purpose of setting the stage for the hyperbolic
and parabolic equations and systems which are studied in Chapters 10, 11,
and 12.

Although Chapters 6-9 emphasize the development of tools and meth-
ods, I have tried to provide sufficient applications to motivate and illus-
trate the theory as it unfolds. However, beginning in Chapter 10, the
focus switches from methods to applications, and developing the theories
of hyperbolic systems conservation laws in one space dimension (Chapter
10), linear and nonlinear diffusion (Chapter 11), linear and nonlinear waves
(Chapter 12), and nonlinear elliptic equations (Chapter 13) as far as pos-
sible in this limited space. I have, of course, needed to severely “limit the
budget” in each of these last four chapters, but I hope I have given the
flavor and some background on each topic, enough to enable the interested
student to consult more detailed and comprehensive treatments.

Although I have made certain choices for the order, I have tried to
make the exposition flexible enough to allow for the individual instructor
to make changes without too much difficulty. For example, to enable the
introduction of the spherical mean in connection with the Laplace equation
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instead of the wave equation, I have made Section 3.2a self-contained. This
means that it is possible to re-order the material following Chapter 2: the
one-dimensional wave equation, then Laplace’s equation (with Section 3.2a
added to Section 4.1d), and then the n-dimensional wave equation. Simi-
larly, although I felt the need to collect together all of the linear functional
analysis and Sobolev space theory in Chapter 6, it is possible to only dis-
cuss the results for Hy'?(2) in order to more quickly study the Dirichlet
problems in Chapters 7, 8, and 9. Another example would be to jump into
Chapter 10 after only a minimal amount of Banach space theory and the
contraction mapping principle.

I have tried to include a large number of exercises. Some of these ex-
ercises are fairly routine applications of the material covered in the text.
Other exercises are designed to supply some steps which are omitted from
the exposition in the text; this not only helps to streamline the exposition,
but it also engages the student more actively in the learning experience.
Still other exercises are intended to give the student a brief exposure to
related topics which have been reluctantly omitted from the textual expo-
sition, casualties of more hard choices of mine. When I teach this course, I
usually assign many exercises, including some of each type. On the other
hand, the instructor may choose to use lecture time to “solve” all omitted
steps of proofs, and/or pursue some of the omitted topics. In any case,
hints and solutions of selected exercises are provided after Chapter 13; I
hope the instructor and student find these useful.
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Introduction

A partial differential equation (abbreviated PDE) is an equation in-
volving a function u of several variables, and its partial derivatives. For

example,

(1) U = kuu,
(2) U = czu:u:;
(3) Upy + Uyy = 0,

are all partial differential equations for functions of two variables which
are familiar from undergraduate courses on differential equations: (1) is
the one-dimensional keat eguation in which u represents the temperature
of a heat-conducting rod having k as its heat conductivity; (2) is the one-
dimensional wave equation in which u represents the displacement of a
vibrating string from its equilibrium position and ¢ represents the speed of
wave propagation; (3) is the two-dimensional Laplace equation which arises
as a steady-state condition in heat conduction problems and occurs in many
other problems of analysis and mathematical physics. :
More generally, a PDE for a function u(zy,...,2,) is of the form

(4) F(zl,'--yzm",uz‘nH-sux,.yuxlz“un':cg,---) =0.

The order of (4) is the order of the highest derivative occuring in the equa-
tion. Moreover, the equation is linear if it depends linearly on u and its
derivatives; if all derivatives of u occur linearly with coefficients depend-
ing only on z, then the equation is semilinear; and if all highest-order
derivatives of u occur linearly with coeflicients depending only on z, u, and
lower-order derivatives of u, then the equation is quasilinear. The equa-
tions (1)-(3) are all second-order linear equations. A simple example of a

first-order PDE is

(5) u; + a(u)uy = 0.

When a(u) = a is a constant, (5) is a linear equation called the transport
equation. In general, (5) is a quasilinear equation; for example, when a(u) =

u, the equation is called the inviscid Burgers’ equation which arises in the

1



2 Introduction

study of a one-dimensional stream of particles or fluid having zero viscosity.
An example of a first-order nonlinear PDE is

(6) u + u§ =c?,

which is the eikonal equation of geometric optics.
.. We can generalize the equations (1)-(3) to higher dimensions if we
introduce the Laplacian or Laplace operator A = 8%/8z% + ...+ 0%/8x2.

Then we can write

) u; = kAu,
(8) uy = c?Au,
9) Au=0.

Equation (7) represents the diffusion of heat through an n-dimensional
body; equation (8) represents surface waves if n = 2, and sound or light
waves if n = 3; and equation (9) is the n-dimensional Laplace equation.
Equations (7) and (8) are both evolution equations because they describe
phenomena which may change with time; equation (9) on the other hand
is satisfied by steady-state (time independent) solutions of (7) and (8).

In order for a PDE to have a unique solution, we must impose addi-
tional conditions, sometimes called side conditions, on the solution; these
are usually in the form of initial conditions or boundary conditions or some
combination of the two. This is certainly familiar from ordinary differ-
ential equations (abbreviated ODEs) where a first-order equation requires
an initial condition, and a second-order equation requires either two initial
conditions, or a boundary condition at each end of a finite interval. The
need for side conditions is also evident from the physical models. For ex-
ample, we cannot know the temperature of a cooling body if we do not
know its initial temperature; but even knowing the initial temperature will
not be enough unless we also monitor what happens to the temperature on
the boundary of the body. In this case, we must impose upon (7) an initial
condition and a boundary condition: the result is called an instial/boundary .
value problem. For other PDEs we may be able to consider a pure initial
value problem or pure boundary value problem.

The values assigned to the side conditions are called the data. A PDE
with side conditions is well posed if it admits a unique solution for any
values assigned to the data. (Actually, well-posedness should also require
the solution to depend continuously on the data, as we shall discuss later.)

-Of course, the equations (7)-(9) are very special, and we may wonder
how to handle more complicated equations which arise in applications. To
begin, we can add a function f to these equations to obtain nonhomogeneous
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equations. For example, the nonhomogeneous Laplace equation (sometimes
called the Poisson equation)

(10) Au=f

arises in various field theories such as electrostatics. Similarly, considera-
tions of heat sources and external forcing terms in (7) and (8) respectively
lead to the nonhomogeneous heat and wave equations

(11) u; — kAu = f,

(12) Ut — czAu = f

These equations may be modified further if additional considerations are
in effect; for example, consideration of a restoring force in (8) leads to the

Klein-Gordon equation
(13) Uy — 2Au+ m?u =0,

which arises in quantum field theory with m denoting mass, and consider-
ation of a damping or dissipation term in (13) leads to

(14) Uy — c2Au + auy + mPu =0,

which in one space dimension is called the telegrapher’s equation because it
governs electrical transmission in a telegraph cable when current may leak

to the ground.
Another important second-order linear equation which arises in quan-

tum mechanics is Schrodinger’s equation
(15) U = i(Au + V(z)u)

in which ¢ = +/-1 indicates that the solution u(z,t) must be complex-

valued; the function V'(z) is called the potential.
So far, the second-order equations we have mentionned are all linear.

This is not surprising, since the theory is simpler and for certain modeling
purposes, a linear equation may suffice. But in other situations the nonlin-
ear character of the problem is important and even essential. For example,
if we allow f in (10)-(12) to depend on u, then we obtain the semilinear

Poisson equation
(16) Au = f(z,u),
the semilinear heat equation

(17) u — kAu = f(z,t,u),
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and the semilinear wave equation

(18) Uy — 2 Au = f(z,t,u).

A specific instance of (16) is the conformal scalar curvature equation
(19a) Au+ K(z)e =0 (n=2),

(19b) Au+ K(@)u =0 (n>3),

which occurs in differential geometry when studying the scalar curvature
of Riemannian metrics which are conformally Euclidean: for n = 2 the

metric e2¥(dz? + dy?) will have Gauss curvature K(z,y) if u satisfies (19a).
Specific instances of (18) are the semilinear Klein-Gordon equation

(20) uy — 2Au+miu+yu? =0  (p an integer > 2),

which arises in quantum field theory with 7 denoting a “coupling constant,”
and the sine-Gordon equation

(21) Uy — c2Au+sinu = 0,

which also arises in quantum field theory, but was first studied in differential
geometry in connection with surfaces of constant curvature. If we allow
dissipation in (20) or (21), we get the dissipative Klein-Gordon or dissipative

sine-Gordon equations

(22) u — 2 Au+ au; + miu+ av? =0,

(23) uy — c*Au + auy +sinu = 0.
A semilinear version of (15) is the cubic Schrédinger equation
(24) ue = i(Au + oful*u) o = %1,

which arises in nonlinear optics, and also the study of deep water waves.
Equations also arise in applications which are not semilinear. For ex-
ample, in differential geometry the minimal surface equation

. Vu
%) i (i) =0

is a second-order quasilinear equation for a graph z = u(z,y) which has
the smallest surface area for a given boundary curve; for example, soap
films are minimal surfaces. In (25), “div” denotes the divergence of the
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vector field (1 4+ |Vu[?)~1/2Vu, and (25) is said to be in divergence form.
A quasilinear PDE arising in physics is the porous medium equation

(26) uy = k div (u"Vu),

where k£ > 0 and v > 1 are constants; this equation governs the seepage of
a fluid through a porous medium (e.g., water through soil). An example of
a nonlinear PDE which is not quasilinear is the Monge-Ampére equation

(27) : det(u;j) = f(=, u),

which arises in differential geometry; here the second-order derivatives u;; =
0%u/dz;0z; occur in a nonlinear way.

Equations arising in applications need not be restricted to second-
order. The bikarmonic equation

(28) Alu=A(Au) =0

is a fourth-order linear equation which occurs in elasticity theory, whereas
the Korteweg de Vries equation (or KdV equation)

(29) Uy + CUUy + Ugzy = 0

is a third-order quasilinear equation which was first encountered in the
study of shallow water waves.

If u is replaced by a vector-valued function i(z;,...,z,) and F is
also vector-valued, then (4) becomes a system of differential equations. For
example, if A(z,t) and B(z,t) are N x N matrix-valued functions, and
¢(z,t) is a vector-valued function, then

(30) A(x) t)'(f;,; + B(x’t)ﬂt = 5'(2»'3)

is a linear first-order system. An example of (30) is Mazwell’s equations
from electromagnetism theory in R3: -

(31) Ey—curlH=0 H; +cullE =0,

where E denotes the electric field and A the magnetic field. Notice that
(31) is a system of six equations in the six unknowns (£, H).

A natural example of a nonlinear first-order system occurs in fluid
mechanics when the balancing of forces according to Newton’s law produces
Euler’s equations

(32) @+ (@ V)a+ %Vp =0
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for an inviscid (no viscosity) fluid with velocity field #, pressure p, and
density p. In dimensions n =1, 2, or 3, & has n components, and is a func-
tion of the n + 1 variables (z,t); moreover (@ - V)i denotes the n vector
whose jth component is 3 ; u;0u;/0z;. Notice that (32) is a system of n
equations in the n + 2 unknowns (i, p, p), and so is underdetermined. One
additional equation that must be coupled with (32) expresses the compress-
ibility properties of the fluid. If the fluid is incompressible, this equation is
div @ = 0, whereas for compressible fluids we must use p, + div (p&i) = 0
which expresses conservation of mass. Of course, these equations coin-
cide for homogeneous fluids, i.e., constant density p, and coupling with (32)
yields a well-posed system. More general than constant density is 1sentropy,
which means that pressure is a known function of the density: p = p(p),
which is called an equation of state. Coupling (32) with an equation of
state and either incompressibility or conservation of mass yields a well-
posed system. For n > 2, the Euler equations are used to model vortices
and turbulence. Natural questions to ask are whether smooth initial data
produces a smooth solution at least for a short period of time, and whether
an initially smooth solution can develop singularities.

If one considers a viscous fluid, then we must replace (32) by the

Navier-Stokes equations
1
(33) U+ (€-V)a+ ;Vp = vAd,

where v is the viscosity and A operates on each component of #. Although
(33) may seem more complicated than (32), the viscosity term actually
has a tempering influence on the solutions which is not present in (32). A
natural question to ask is whether the viscosity enables a smooth solution
to exist for all time. This is known to be true for n = 2, but as yet has
not been proved for n = 3, in spite of ample physical intuition! Another
important question in fluid dynamics is how well does (33) approximate
(32) as v — 07 This may be useful in modeling turbulence.

This comparison of (32) and (33) touches upon some general themes
which we shall encounter for evolution equations. Does a solution exist at
least for a short time? If so, does it exist for all time, and can we describe
its behavior asymptotically as t — co? If the solution fails to exist globally
in time, is this due to a “blow-up” (the values of the solution approaching
infinity), or a “gradient catastrophe” (the values of the spatial derivatives
becoming infinite), or some more complicated singularity at a finite time?

On the other hand, for time-independent or “stationary” PDEs such
as the Laplace equation, the conformal scalar curvature equation, and the
minimal surface equation, we may ask: What boundary conditions are
appropriate? Does a solution exist? Is it unique? How smooth is the
solution?

In this book, we shall develop some of the methods used to study such
linear and nonlinear PDEs, and apply these methods to obtain conclusions
about their solvability, and the behavior of the solutions.



