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Preface

The population of the earth has been persistently increasing
throughout recorded history, but only within the twentieth century
has its size become an important obstacle to orderly civilization.
One of the problems created by this growth, which has proved to
be of some mathematical interest, is that of congestion. On land
and in the air, in vehicles and on foot, people now get in each
others’ way to an extent far surpassing that of any previous age.
There may have been overcrowding in ancient Rome or Elizabethan
London, but it can hardly have constituted the hazard, the
inconvenience, or the expense which it does today. We see conges-
tion not only in transportation, but in virtually every aspect of
modern life: communication, urban development, commercial
organization, reticulation of utilities, mass production, and perhaps
even agriculture.

The scientific study of congestion, whether intended to describe
or to ameliorate, has been a natural consequence of man’s enforced
interest in his increasingly overcrowded world. The most fully
developed mathematical theory of congestion is gueueing theory,
which deals with accumulation at a fixed point, caused by the need
for service, and changing with the passage of #ime. The subject
is more than fifty years old and is now being extended very
vigorously, both in depth of formulation and in breadth of ap-
plication.

As a source of congestion, the motor vehicle occupies a unique
position, both from the practical and from the mathematical point
of view. Estimates of the importance of transportation by car are
difficult to make, but we can be sure that in an industrialized
society the effect is enormous, whether measured economically,
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vi PREFACE

politically, in terms of public healthy psychologically,* industrially,
or purely as a fraction of transportation in general. Some of the
central concepts of the present book, such as traffic delay, traffic
flow, and traffic density, are popular concepts, and quite justifiably
so. Few areas of applied mathematics have such widespread and
directly intuitive importance in our lives.

On the mathematical side we find many genuinely interesting
aspects of traffic flow. The development in the past decade of a
substantial theory of vehicular movement has come not only from
the need to understand more exactly the empirical results of the
traffic engineering profession, but also as a natural extension of
tl}e' theory of queues. We consider simultaneously the dimensions
of tsme and space, and permit delay to arise partially from waiting
(sequentially in a single dimension) but more generally from mere
proximity in the time-space plane. Many intrinsically attractive
mathematical questions arise from the traffic-theoretic formula-
tion, some of which are not yet answered. Although the problems
are difficult to formulate and still more difficult to solve, there
is by now a considerable literature in traffic flow theory and the
subject is ready for systematic exposition.

Perbaps it is unnecessary to add that we are not trying to

- “solve the traffic problem,” any more than a hydrodynamicist
is trying to solve the water problem or an entomologist the bug
problem. The Traffic Problem, like The Toll of the Road, are
expressions quite innocent of precise significance. Our mathematical
theories should define, characterize, and describe one specific
phenomenon: vehicular traffic. We must assume that these
investigations, like those of classical applied mathematics, will
lead naturally to improved techniques for practical understanding
and control of the subject being studied.

As a simple consequence of its immaturity, traffic flow theory
has been developed by research workers of widely varying interests:

* A simple anomolous by-product, the traffic accident, engages public attention
to an astonishing degree, obscuring industrial and domestic accidents, as well
as other more significant contributions to mortality.
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mathematicians, physicists, traffic engineers, economists and, more
recently, practitioners of operations research. In this circumstance
the reader will not be surprised to learn that the field is sprawling,
diffuse, and in many ways rather baffling. There is no general
agreement on notation or terminology, most of which has been
inherited from the traffic engineer. There is very little agreement
on methodology, or on which quantities are significant, or on how
these quantities should be measured. Armed with-the Poisson
distribution and a sufficient interest, nearly anyone can find some
original, and possibly valuable, theme in traffic flow.

In this, the first attempt to justify the theory as a sensible
part of applied mathematics, I have selected fairly ruthlessly from
the literature in order to bring out the fundamental relationship
between traffic flow theory and the classical subjects of queueing
theory, stochastic processes, and mathematical probability. The
present volume reflects my belief that the greatest development of
traffic theory will take place in these directly connected areas,
rather than by analogical variation of equations which apply to
other substances.*

It is important to find meaningful middle ground between pure
mathematics-and traffic engineering. It should be possible to show
traffic engineers the usefulness of theoretical analysis, and at the
same time the mathematician should find systems worthy of his
consideration. Keeping both of these requirements in mind, 1 use
the framework of mathematical demonstration, while dealing with
concepts of direct traffic-theoretic significance. A plausible
although possibly heuristic, proof is preferred both to empirical
dogmatism and to decorative abstraction.

Although I employ the terminology of roads and vehicles, the
attentive reader will find many portions of the book with wider
application. The postulates of Chapter 3, intended to characterize
road traffic, are often partly laid aside, so that the structure is

* There are some references to alternatives in the supplementary list which
follows Chapter 7. Of these, the ‘'Boltzmann-like” system is the most substantial,
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in fact more general. The precise degree of generality varies from
section to section, and in a few cases the identification with vehicles
is indeed tenuous.

The reader is assumed to have some familiarity with mathemat-
ical probability. Chapter 1 is designed as a convenient collection
of results for reference, but is self-contained and may be used as
a compact introduction to the subject. Chapter 2 stands in the
same relation to the theory of queues. No other knowledge is
required except for undergraduate mathematics and perhaps an
intuitive idea of typical vehicular behavior in industrialized nations.

I owe a great deal to Robert M. Oliver for discussions on traffic
flow theory. Chapters 3 and 4 in particular have benefited from
our many interesting arguments, and it is a pleasure for me to
acknowledge this debt to an esteemed colleague. The manuscript
was read by Gordon Newell and Alan Miller, and their comments
have been very helpful in preparing the final version. I have also
received useful advice and comments from E. Farnsworth Bisbee,
Leo Breiman, Leslie Edie, William Jewell, George Weiss, John
R. B. Whittlesey, and from the participants in a series of seminars
organized by Serge Goldberg of the Ministére des Travaux Publics
and given at the Ecole des Ponts et Chausées.

The Institute of Transportation and Traffic Engineering of the
University of California has provided me with excellent opportunity
for this work, and I am indebted to Professor Harmer Davis and
the late Professor J. H. Mathewson for creating an atmosphere
so conducive to research. The manuscript was very efficiently
typed by Allan S. Jacobson.

I am most particularly grateful to Richard Bellman. He
suggested that I write the book and frequently gave me a good
clue to some mathematical difficulty.

‘Frank A. Haigur
February 1963
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CHAPTER 1

Probabilify and Stafistics

1.1 Introduction

Experiments can be classified into one of two categories, depend-
ing on whether their outcomes are certain or uncertain. A certain
experiment will yield exactly the same value whenever the exper-
iment is repeated under the same conditions; an wunceriain exper-
sment will give a variety of values. The distinction is pragmatic
rather than logical, for many certain experiments can be made
uncertain by various methods, particularly refinement of in-
strumentation. The repeated measurement of length of a line may
give the same value if the ruler is coarsely calibrated and several
different values if the ruler is more finely calibrated.

Nevertheless, the distinction between certainty and uncertainty
is a useful concept, and the mathematical form of the result is quite
different. In a certain experiment, the result will consist of a single
constant for each quantity measured. The result of an uncertain
experiment is called a random variable; the study of uncertain
results is the science of statistics. A random variable is completely
described not by a number but by a function' which shows the
relative frequency (empirical or theoretical) of occurrence of partic-
ular values. The function is called a statistical distribution.

Consider the simple experiment of measuring the elapsed time
between the arrival of the front bumpers of consecutive cars in a
single lane of traffic. If the cars are rigidly scheduled, each value
will be exactly the same, and the experiment will not be statistical.

t As we shall see there are several functions which are essentially equivalent.
1



2 PROBABILITY AND STATISTICS

However, in an actual traffic situation, many different numbers
will be obtained, and these correspond to a statistical distribution.
It is an important problem to determine a suitable mathematical
function which will accurately describe the relative frequency of
different headways, and so characterize the flow of traffic.

If an experiment is uncertain, it is necessary at first to decide
what category of results are possible. The region of possibility may
form a set of numbers, called the domain of definition for the
distribution.

ExamMpLE 1. Number of kittens born in a litter. Domain of
definition: 1,2, 3, 4,... .

ExampLE 2. Number of cars counted in a minute of observa-
tion. Domain of definition: 0,1,2,3,....

ExampLe 3. Age of an individual. Domain of definition: (0, o).

ExampLE 4, Number shown on a throw of a die. Domain of
definition: 1,2, 3, 4, 5, 6.

ExampLE 5. Spacing between consecutive cars, front bumper
to back bumper. Domain of definition: (0, ).

ExaupLe 8. Spacing between consecutive cars, front bumper

to front bumper. Domain of definition: (4, o) where 4 is a car
length.

In all the examples given above, with the exception of Exam-
ple 4, the upper limit is infinite. This may seem wrong in some
cases, but it should be remembered that the domain of definition
shows possible values, not probable values. In Example 1, values
such as —2 or } are theoretically impossible but 10, 20, or larger
values are simply improbable. It could be argued that by taking
a much bigger integer, a truly impossible value could be found.
The difficulty in this case is knowing where to truncate. .
It is more convenient mathematically to adopt the fiction that
(perhaps with probability 10-19°0) 250 kittens could be born in a
litter than to say that it is theoretically possible that 249 could,
but theoretically impossible that 250 could. The choice of a
convenient demain of definition is perhaps a question of judgment,
which can be gradually acquired, as much as a matter of pure logic.
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Another aspect of the examples above is the distinction between
discrete and continuous domains. In Examples 1, 2, and 4, the
only admissible values are positive integers, while in the other
cases, a whole range of real values are permitted. This distinction
is easier to make than that between finite and infinite domain but
even here there may be some doubt. If a measuring instrument is
calibrated only in inches, the results it gives would be discrete.
As the calibration is improved, the space between possible
values decreases, and it is not difficult to see that if there is such a
thing as a “true” value, it could be any real positive number.

It turns out that virtually every reasonable experiment which
is wholly continuous of wholly discrete will have one of the following
domains of definition: ]

A. The whole real line, (— o0, o). For example, the error in a
measurement of length.

B. The positive half of the real line, (0, o). For example the
age of an individual.

C. A piece of the real line, (4, ). For example, the angle a
thrown needle makes with a fixed line on the floor, @ = 0, b = =.

D. Al the positive integers, beginning with some value, #,
n+ 1,72+ 2,.... In Examples 1 and 4, #n = 1, and in Example 2,
n = 0. '

E.. Some of the positive integers. In Example 4, we have just
six of the integers possible. -

In addition to discrete. and continuous domains of definition,
there is a third type of domain which is important in road traffic
theory: the mixed discrete and continuous. As an example of
this, imagine a highway on which all private cars obeyed a speed
limit which was given as: minimum 30, maximum 60; and suppose
that tractors were allowed to use the road if they traveled at
exactly 10 m.p.h. Then the domain of definition would be the
continuous interval (30, 60) plus the single value 10.

In the next four sections, we discuss continuous, discrete, and
mixed probability distributions, with special emphasis on those
important for road traffic.
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1.2 Discrete Distributions

Suppose we have some set of the positive integers which are
possible outcomes of an experiment. A complete statistical descrip-
tion of that experiment is given when the probability of each
outcome is specified. In some cases, such as throwing fair dice,
these probabilities can be deduced from the specifications of the
experiment. In other cases, such as the birth of kittens, the
probabilities can only be determined empirically. Even in the latter
cases, however, it is sensible to deal with theoretical values for the
probabilities, so that hypothetical functions can be compared with
experimental results.

A set of numbers qualifies as probabilities for all the possible
results of an experiment provided they are (1) never negative, and
(2) add up to unity. Thus the figure zero is taken as the smallest
allowable value for a probability, and one as the largest, roughly
corresponding to impossibility and certainty. ‘

Let N denote the outcome! of the experiment, where

N=0,1,2,.... Then we write for the probability that N has
the value #

Prob (N = n) = $,

where 0 <p, <1, and po+p; + ps+ ..

I
-

ExaMpLE 1. Observations on cat life show the table (see
facing page) for the frequency of litters of various sizes.

Dividing by 149, we obtain an empirical probability distribution
for this particular breed of cats (see below table).

t It is now standard practice to denote 2 random variable by a capital letter
and the corresponding dummy variable in its probability distribution function by
the correspording small letter. In the continuous and mixed cases the letters X, »
are frequently used and in the discrete case the letters N, n. However, once in
this section {Binomial distribution) and once in the next it will be convenient to
call a certain constant N.
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Number of Number of
kittens litters
1 3
2 7
3 17
4 25
5 33
6 29
7 20
8 ]
9 4
10 2
>10 1]
149
P = 3/149 PG == 29/149
Pg = 7/149 P, = 20/149
Py = 17/149 Ps = 9/149
P = 25/149 Py = 4/149
s = 33/149 0= 2/149

P =0, n > 10.

In the remainder of this book, probability distributions will be
theoretical, rather than empirical. Let us consider, therefore, some
probability distributions which can be found by reasoning, without
recourse to trial.

If a fair die is thrown, the probability distribution is $, = $,
= P, = P, = P = Ps = 1/6. How is this known? It might be
mistakenly assumed that the values 1/6 could only be determined
by experiment. Actually, the situation is quite the reverse. The
list of six 1/6’s is in fact the definition of a fair die. The statistical
problem then becomes one of deciding whether or not any particular
die is fair.

Any convergent series of positive constants can be used to form
a probability distribution. We define three of these which are of
importance in road traffic theory, and then show the types of
traffic experiments which yield these distributions.
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GeoMETRIC DisTriBuTiON. Consider the geometric series

14+ p4+pt+p3+....

If p < 1, this is a convergent series, and has the sum 1/(1 — p).
Therefore, a valid probability distribution can be defined simply
by multiplying each term of the series by (1 — p), as follows:

Po=(1—p)
Phr=Q0—pp (1)
pe=(1—p)p*

with the general expression p, = {1 —p)p*, n=10,1,2,.... In

Chapter 2, we shall see that an important quantity, the length of
a queue, has this distribution.

Poisson DistriBuTioN. Consider the exponential series
14+ A4 A%20 2331+ ...,

which is convergent for all 1, and has the sum &’ Dividjng by &,
we obtain a valid probability distribution, defined as follows:

po=e"
pr=4e? (2)
with the general expression p, = A"e~*n!, n = 0,1,2,.... This

distribution, as we shall prove later, describes the probability that

exactly # randomly® arranged cars will be observed in unit length
of road.

t The word random is used in two ways in statistics: (a) as the equivalent
of uncertain, and (b) as the equivalent of Poisson. In this book it will always
have the second meaning, except when speaking of a random variable.
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BiNomIAL DISTRIBUTION. Suppose we choose two numbers which
add up to unity, say ¢ + ¢ = 1. Expand (p + ¢)¥ in a binomial
series, where N is a fixed integer, and obtain

gt (G e+ (Y)prset
APt =1,
4 v
PROB | L
4
7'
| l I Iooo#_
0 ! 2 73 4 5 6 7 n

l A=285

EFic. 1. A discrete distribution.

Therefore, a valid prpbability distribution can be defined as

Pn':(l::)flv—"q", n=0,1,...,N.

Notice that for this distribution, the domain of definition consists
of only N + 1 values.

It is possible to represent a discrete probability distribution
geometrically by erecting an ordinate of length ¢, over each value #.
Figure 1 shows a typical form for the Poisson distribution.



8 PROBABILITY AND STATISTICS
1.3 Random Points on a Line

A Bernoulli experiment is an experiment which has only two
possible outcomes, with constant probabilities $ and ¢ =1 — p;
for example, the flipping of a coin. For convenience, the two out-
comes are called “success’” and “failure.” If a Bernoulli experiment
is performed N times in succession, the probability of exactly »
successes (# = 0, 1,..., N) is the binomial distribution.

Proof. The probability of getting first # successes is *, and then
N — n failures is ¢¥ ~*; therefore, the probability of 7 successes
followed by N — # failures is $” ¢¥ ~". But a total of # successes

may be arranged by permuting the above sequence in any one of

the (i:’) possible ways, leading to the binomial expression.

ExamprLE. A fair coin is tossed 50 times. What is the probability
of exactly 25 heads? 4 = g = }, since the coin is fair, N = 50,
n = 25, and therefore

Prob (25 heads) = py; = (gg) (%)u (_;_)” .

Now suppose that points are dropped at random on an infinitely
long line in such a way that the average number of points per unit
length is 2. Then the probability of finding exactly »# points on a
finite segment of length 7 is the Poisson probability with 2
replaced by 1r.

Proof. Take a finite segment of length ¢ which completely
surrounds r. In dropping each of N points, we have a Bernoulli
experiment in which the probability of a success (falling on 1) is
7/t, and the probability of failure (falling on ¢ but outside 1) is
1 —7z/t. Therefore, by the previous resuit, the probability of
obtaining exactly » points in 7 is

b= (ZZ)('/‘)” (1—<t¥-%,  #=0,1,2,...,N.

Let ¢ approach infinity, and N approach infinity in such a way
that N/t approaches the constant density of points A.



