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Foreword

These dual-language four-volume textbooks grew out of my two-volume monograph
entitled “Constitutive Equations for Engineering Materials” with Volume 1 subtitled
“Elasticity and Modeling” published by john Wiley inter-Science, New York, in
1982. Volume 2 subtitled “Plasticity and Modeling” together with an updated
version of Volume 1 were published more than a decade later by Elsevier,
Amsterdam, in 1994, The first parts of Volumes 1 and 2 of the original books are
intended as textbooks for elasticity and plasticity respectively, while the later parts
of each volume is intended as reference books for advanced materials as required for
many civil engineering applications.

The materials in my original two-volume monograph are now reorganized in two
separate books published in both Chinese version and English version, respectively:
one book for the fundamentals of theories of elasticity and plasticity, and the other
book for their implementations to soil and concrete materials and their applications.
This book entitled “Elasticity and Plasticity” is intended for engineers with a basic
background in mechanics, strength of materials, calculus, material behavior of
metals, and some basic concept of finite element methods. The companion book
entitled “Constitutive Equations for Cencrete and Soil” provides a compact and
convenient summary of the mathematical modeling techniques for material behavior
in nonlinear finite element analysis for civil engineers wc;rking in the areas of
reinforced concrete and soil mechanics.

Elasticity and Plasticity is organized into three parts consisting of nine chapters,
with Part One (Chapters 1-4) presenting the foundation of elasticity theory. Chapter
1 introduces the basic concepts and notations of vector and tensor analysis. A novel
approach to the analysis of stress and strain is employed in Chapters 2 and 3, which
not only elucidate these principles but provide a clear physical understanding as well,
Chapter 4 explains the general assumptions used in the formulation of elasticity-
based constitutive models. Here, mathematical and physical reasoning are used to
derive the general forms of the equations.

Part Two (Chapters 5-7) extends the elasticity-based stress-strain models to the
plastic range and develops plasticity - based models for engineering applications.
Here, as in Part One, Chapters 5 and 6 provide the necessary foundations of the
theory of plasticity by first describing the characteristics and modeling of uniaxial
behavior of materials, and then followed by the extension of the yield point in simple
tension into the yield criteria in multi-dimensional stress space. Chapter 7 explains
the general assumptions used in the formulation of plasticity - based constitutive
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models, Here, as in elasticity and modeling, mathematical and physicsl reasc;ning
are used to derive the general forms of the equations.

Part Three (Chapters 8-9) develops the constitutive models for metals, shows the
necessary numerical procedures for computer solutions, and presents some typical
problems in structural engineering applications. These two chapters serve as a
transition to the more complicated problems involving soil and concrete materials
described in the companion book entitled “Constitutive Equations for Concrete and
Soil”.

The development of these four textbooks in dual language on constitutive modeling
of engineering materials was strongly influenced by the following two factors:

(1) The future direction of research and education in solid mechanics and
structural engineering is in the area of modeling, simulation and validation.
Modeling is mechanics and material science, simulation is computing and software
development, and validation is experimentation and field measurements. Constitutive
modeling of engineering materials is a critical element for the future advances in civil
engineering applications.

(2) The realization of the importance of English language in the globalization of
the world economy. The dual-language publication of these textbooks provides an
excellent tool for those who wish to learn about constitutive modeling and to use
computer simulation in the standard terminology of mechanics, materials, and
computing in both English and Chinese.

I express my sincere thanks to Professor T. Q. Yu ( Hubei University of
Technology) and Dr. X, W. Wang (China Academy of Railway Sciences) for
suggesting and carrying out the reorganization of my original two-volume monograph
into the present dual language version of the four books. Student, researcher, or
practitioner, novice and expert alike, will profit much from reading these books,

either in English or Chinese, and having them for references in the years to come.

W. F. Chen
Honolulu, Hawaii
August 2003




NOTATION

Given below is a list of the principal symbols and notations used in the
book. All notations and symbols are defined in the text when they first appear.
Symbols which have more than one meaning are defined clearly when used to
avoid confusion, and usually the correct meaning will be obvious from the

context.

Stresses and Strains

0,.0,,0, Principal stresses
i Stress tensor
i Stress deviator tensor
g Normal stress
T Shear stress
O, :%1 | Octahedral normal stress ,
Toey = \/—2-J2 Octahedral shear stress
0, = Ogy Mean normal (hydrostatic) stress
7, = %JZ Mean shear stress
51053, 85 Principal stress deviators ‘
), €y £y Principal strains
£, Strain tensor
e, Strain deviator tensor
€ Normal strain
Y Engineering shear strain
e, =1, Volumetric strain
€oct :%1 ’ Octahedral normal strain
Yoot =2 % » Octahedral engineering shear strain
€,.€;.6; Principal strain deviators
Invariants

I,=0,+ 0, + 0, = 0;,=first invariant of stress tensor

J; :?sijsij
— 2
=gl(ox —0,)* +(0, —0,)* +(0, — 0, )’ ]+ 12 + 12 + 7.2
=second invariant of stress deviator tensor

J, :%S'ij-‘f/k s, = third invariant of stress deviator tensor
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cos3f=——
2 123/2
I{=¢, + e, + €5 = ¢, =first invariant of strain tensor
p =y2J, =deviatoric length defined in Figurel.12®
1
=7
|
J5; =5¢€i,€i; , ,
:6[(8,\: - Ey)z +(ey - 83)2 +(ez - ex)2]+ Ei}, + eyl + EZX
=second invariant of strain deviator tensor

where @ is the angle of similarity defined in Figurel.13®

I, =hydrostatic length defined in Figurel.12®

Material Parameters

f Uniaxial compressive cylinder strength ( f/>0)

1 Uniaxial tensile strength
e Equal biaxial compressive strength ( f_>0)
E Young’s modulus
v Poisson’s ratio

E

K= ———— = Bulk modul
31-2) ulk modulus

G= m =Shear modulus
() Cohesion and friction angle in Mohr-~Coulomb criterion
a, k Constants in Drucker-Prager criterion :
k Yield (failure) stress in pure shear
Miscellaneous
{ } Vector
[ ] Matrix
Cijui Material stiffness tensor
D, 4 Material compliance tensor
f( ) Failure criterion or yield function
X, y,zor

Xy, X,, x3 Cartesian coordinates
Ny Kronecker delta
W(e;;) Strain energy density
Q(o,;)  Complementary energy density
;= cos(x;, x;)=The cosines of the angles between x; and X, axes (see
Section 1.11)

€ Alternating tensor defined in Section 1.10

i jk

@ [3E]BRE% . Constitutive Equations for Concrete and Soil. 45 : SHEES Tk AR, 2005.
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PART ONE

BASIC CONCEPTS IN
ELASTICITY







CHAPTER ONE

VECTORS AND TENSORS

1.1 INTRODUCTION

The use of vector and tensor notations is commonplace in the current literature
when stress, strain and constitutive equations are discussed. A basic knowledge
of these notations is therefore essential to an intelligent assessment of the
material presented. The preference of such notations over expanded forms for
the physical quantities arisés'mainly from the important advantage of concise-
ness or brevity with which the various relationships can be expressed in
mathematical terms, thereby allowing greater attention to be paid to physical
principles rather than to the equations themselves.

- The material included here in the review of vectors and tensors covers only
those areas that have applications in the main subject concerning stresses.
strains, and their relationships in the elastic and inelastic ranges.

1.2 COORDINATE SYSTEM

4 o
For the present. we restrict ourselves to Cartesian coordinate systems. In a
three-dimensional space, a,Cartesian coordinate system is pictured as a set of
three mutually orthogonal axes denoted as the x-, y-, and z-axes. For future
convenience, the axes are more conveniently designated as x,-, Xx,-. and
xy-axes, rather than the more familiar notation x, y, and z. The sketch shown
in Fig. 1.1 assumes the use of the right-hand notation where the Xx,- and
x3-axes lie in the plane of the paper and the x,-axis is directed toward the
reader. :

In this notation, the axes are parallel, respectively, to the (right-hand)
middle finger pointing toward the viewer, the thumb extending to the right,
and the index finger vertically up. The positive.directions are as indicated. If
we imagine a right-hand screw, the rotation of the x,-axis toward the x,-axis

X2

N

FIGURE 1.1 Right-handed screw notation.



causes a travel of the screw.in the positive direction of the x;-axis. Similar
travels along positive directions can be checked by taking the indices 1, 2, and
3 in cyclic order. Because of this. the coordinate system shown in Fig. 1.1 is
said to be right - handed. A system that is not right-handed is called lefi - handed.
If the left hand were chosen. the posilive x5-axis in Fig. 1.1 would be pointed
downward. Note that any two right-handed systems, arranged to have a
common origin, may be rotated intd one another so that their axes coincide.
This holds also for any two left-handed systems, but not for one of each. In
this book, we restrict ourselves to the use of right-handed coordinate systems.

1.3 VECTOR ALGEBRA

A vector is a quantity that possesses both magnitude and direction. as
contrasted to a scalar, which possesses magnitude alone. For example, velocity
1s a vector, and temperature is a scalar. A vector is usually represented by an
arrow, drawn in the direction of the vector whose length is made proportional
to the magnitude of the vector.

Unit vectors e, e,, and e, are shown in Fig. 1.2 along the three mutually
perpendicular axes. The unit vector e, for example, is of unit length (measured
from the origin) and lies along the x,-axis. Thus it is necessarily perpendicular
to the other two axes, x, and ’(3

Next, an arbitrary point P in space with the coordinates v,. v,, v, may be
represented by the vector OP or V. This vector ¥ may be visualized as a

X3

P (v v 05)

x;

FIGURE 1.2 Position and unit vectors in right-handed Cartesian coordinate system. x,, Xx,,
= Cartesian coordinate axes; O =origin.



combination of vectors V|, ¥,, and ¥;. Thus

V=n+V+W : (1.1)
or, in terms of unit vectors,

V=v,e, + v,e, + vse, (1.2)

where v,, v,, and v, are now scalar quantities. More simply. the expression
may be abbreviated as '

V=_(v,,v,,0;) (1.3)

The ordering of the scalar multipliers in this form is obviously of great
importance. This may be seen from the extremely close similarity between the
vector notation for ¥ and the Cartesian coordinates of point P.

It is usial to consider ¥,, ¥,, and ¥, as components of ¥ or, conversely, the
vector V as being resolved into its components. The particular point at which a
vector acts is usually understood from the context and need not be specified
separately. In the sketch of Fig. 1.2, the vector ¥ happens to act at the origin of
the coordinate system. '

Two vectors V and U are defined to be equal when their respective
components are equal; that is, the condition for equality is given by

v, =u,, 0= Uy, V3T uy (1.4)
or, more compactly,

i t

v, =u,, i=1,2,3 (1.5)
In general, equality is indicated by merely writing
v, = u; (1.6)

and taking for granted that, since the subscript i is unspecified, the equation
must hold for each of the three possible values of this subscript.

If a vector V is multiplied by a positive scalar a, the result aV is defined to
be a new vector coinciding with ¥ in direction but of magnitude a times as
great. If a is negative, the effect of the negative sign is defined to be a reversal
of direction.

The sum of two vectors U and V is defined according to the parallelogram
law as shown in Fig. 1.3. Obviously, the addition and subtraction of vectors are
defined when these operations are performed on the components of the
vectors:

W=U=V=(u =0 )e,+(u, £ v,)e, +(uy = v,)e (1.7a)



