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2 1 Introduction ‘m

This chapter introduces a number of ideas, many of which are new to you either in context or
substance. Mechanical design is a complex undertaking, requiring many skills. A vocabulary that
allows large relationships to be subdivided into a series of simple tasks is needed. The complexity
of the subject suggests a sequence in which ideas are introduced and revisited. Toward this end,
we consider a number of topics briefly in this chapter to serve as an orientation. Later these topics
are developed in detail, their bones fleshed out, and they will become part of you.

We first address the nature of design in general, then mechanical engineering design in parti-
cular. Design is an iterative process with many interactive phases. Learning and mastering is an
ongoing process as you finish your formal education and throughout your career. Many resources
exist to support the designer, including sources of information such as the Internet and an abun-
dance of computational design tools. There are roles to be played by codes and standards, ever-
present economics, safety, and considerations of product liability.

Then the focus of the chapter narrows, and the primal skill of the designer—adequacy assess-
ment—is considered. Matters of uncertainty have been ever-present in engineering design, and
methods have been evolved that draw on growing knowledge. Attention is given to stress and
strength and to the distinction between design factor and factor of safety. Reliability is considered
as are units, preferred units, calculations, and significant figures.

Decision-making processes are common to all disciplines in the field of engineering design—
not just to mechanical kengineering design. But, since our subject is mechanical engineering de-
sign, we will use mechanical engineering as the vehicle for understanding these decision-making

processes and for applying them to practical situations.

1-1 Design

To design is either to formulate a plan for the satisfaction of a specified need or to solve a
problem. If the plan results in the creation of something having a physical reality, then the prod-
uct must be functional, safe, reliable, competitive, usable, manufacturable, and marketable.
These terms are defined as follows;

* Functional; The product must perform to fill its intended need and customer’s expectation.

* Safe: The product is not hazardous to the user, bystanders, or surrounding property. Haz-
ards that cannot be “designed out” are eliminated by guarding ( a protective enclosure). if that is
not possible, appropriate directions or warnings are provided.

* Reliable: Reliability is the conditional probability, at a given confidence level, that the
product will perform its intended function satisfactorily or without failure at a given age.

* Competitive; The product is a contender in its market.

* Usable: The product is “user friendly,” accommodating to human size, strength, posture,

reach, force, power, and control.
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» Manufacturable; The product has been reduced to a “minimum” number of parts, suited to
mass production, with dimensions, distortion, and strength under control.

* Marketable. The product can be bought, and service (repair) is available.

To remind us that designs are constrained, - and have to exhibit qualities known at the outset,
a design imperative can be expressed as follows:

Design

(subject to certain problem-solving constraints)

a component, system, or process

that will perform a specified task

(subject to certain solution constraints)

optimally.

The parenthetical expressions refer to qualifications placed on the design. The solution method-
ology is constrained by what the designer knows, or can do; the solution, in addition to being func-
tional, safe, reliable, Competitive, usable, manufacturable, and marketable, must also be legal
and conform to applicable codes and standards.

It is important that the designer begin by identifying exactly how he or she will recognize a sat-
isfactory alternative, and how to distinguish between two satisfactory alternatives in order to identi-
fy the better. From this kernel, optimization strategies can be formed or selected. Then, the fol-
lowing tasks are unfolded :

* Invent alternative solutions.

* Establish key performance metrics.

* Through analysis and test, simulate and predict the performance of each alternative, retain
satisfactory alternatives, and discard unsatisfactory ones.

* Choose the best satisfactory alternative discovered as an approximation to optimality.

* Implement the design.

The characterization of a design task as a design problem can introduce the idea that, as a
problem, it has a solution. This may not be so. The design space may be empty. Some situations
may simply have to be endured. To relieve the absence of solutions, some constraint(s) may
have to be renegotiated in order to admit solutions. Then again, even when solutions are possible,
the designer may not be creative enough, inventive enough, to conceive of them. This admits to
the design problem the necessity of individual talent or skill in this area.

There is usually more than one solution, and distinguishing among them to choose the best
may require the ability to handle a large number of solutions without being overwhelmed. Solu-
tions, if they exist, can be characterized as satisfactory, some better than others, some clearly
good, and one, the best by some criterion. Solutions can have a time dependency, for what is

acceptable today may not be so tomorrow, and vice versa.
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Design is an innovative and highly iterative process. It is also a decision-making process.
Decisions sometimes have to be made with too little information, occasionally with just the right
amount of information, or with a surfeit of partially contradictory information. Aman with a watch
knows what time it is; with two watches, he is never sure. Decisions are sometimes made tenta-
tively, reserving the right to adjust as more becomes known. The point is that the engineering
designer has to be personally comfortable with a decision-making, problem-solving role. It should
be a satisfying and welcomed activity. If it is not, there can be personal ramifications ( such as
stress) that can interfere, even threatening the designer’s health.

Design is a communication-intensive activity in which both words and pictures are used, and
written and oral forms are employed. Engineers have to communicate effectively and work with
people of many disciplines who know more than they do, or less than they do. These are important
skills, and an engineer’s success depends on them.

A designer’s personal resources of creativeness, communicative ability, and problemsolving
skill are intertwined with knowledge of technology and first principles. Engineering tools ( such as
mathematics, statistics, computer, graphics, and language) are combined to produce a plan,
which, when carried out, produces a product that is functional, safe, reliable, competitive,

usable, manufacturable, and marketable, regardless of who builds it or who uses it.

1 -2 Mechanical Engineering Design

Mechanical engineers are associated with the production and processing of energy and with
providing the means of production, the tools of transportation, and the techniques of automation.
The skill and knowledge base are extensive. Among the disciplinary bases are mechanics of solids
and fluids, mass and momentum transport, manufacturing processes, and electrical and informa-
tion theory. Mechanical engineering design involves all the disciplines of mechanical engineering.

Problems resist compartmentation. A simple journal bearing involves fluid flow, heat trans-
fer, friction, energy transport, material selection, thermomechanical treatments, statistical
descriptions, and so on. A building is environmentally controlled. The heating, ventilation, and
air-conditioning considerations are sufficiently specialized that some speak of heating, ventilating,
and air-conditioning design as if it is separate and distinct from mechanical engineering design.
Similarly, internal-combustion engine design, turbomachinery design, and jet-engine design are
sometimes considered discrete entities. The leading adjectival string of words preceding the word
design is merely a product-descriptive aid to the communication process. There are phrases such as
machine design, machine-element design, machine-component design, systems design, and fluid-
power design. All of these phrases are somewhat more focused examples of mechanical engineering

design. They all draw on the same bodies of knowledge, are similarly organized, and require sim-

ilar skills.
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In the academic world, with its clustering of knowledge into efficient learning groups, we
encounter subjects, courses, disciplines, and fields. Curricula consist of sequences of courses.
The arrangement of courses present the opportunity to study machine elements and machines earlier
than the last semester. Thus machine design often represents the student’s first serious design
experience with a substantial knowledge base. Some, but not many machine elements can be
understood without a complete thermofluid base, but before you know it, we are into mechanical
engineering design.

Science explains what is; engineering creates what never was. Mathematics is neither science

nor engineering. Physics and chemistry are science, but not engineering.

Laws of
nature
System
Input ———p-| or f———3 Qutput
component
Name of Skill
the game To find Given involved .
; . — Figure 1-1
Analysis Output System, input, laws Deduction
Inverse analysis  Input System, output, laws Deduction The name(s) of the game(s).
Science Laws System, input, output  Induction . .
Engineering System Input, output, laws Synthesis Note distinctions between analysis, science, and engi-
neering and the significant skills involved.

As suggested in Fig. 1 -~ 1, it takes one kind of talent to be a scientist and a different talent
to create what never was. Engineers and scientists know something of each other’s work, but only
in rare cases are both talents developed in an individual. It takes talent and ability to create and
innovate, talent to be a consistently successful problem solver and decision maker, and talent to be
an effective communicator. Preparation, you see, is the developing and polishing of talent, what-
ever the endeavor.

Rational Decision Making

Designers have to make decisions, few or many, some a priori, some in concert. Rational
design making is a systematic design process involving the following key elements.

O—=r Key 1: Suitability, Feasibility, Acceptability

When the military establishment recognized the importance of clear thinking and rational deci-
sion making for its general officers, it sought engineers’ advice on how to proceed. The military
reasoned that engineers commit enormous resources to large projects, with no possibility of starting
over. The advice offered can be distilled to the following:

* A contemplated action is suitable if its adoption will indeed accomplish the intended purpose.

* A contemplated action is feasible if the action can be carried out with the knowledge, per-

sonnel, money, and material at hand, or if it can be assembled in time.



