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Preface

Catalysis with coordination compounds of transition metals has become, during the past
decade, a real forum of encounter for various disciplines of chemistry. Preparative organic
chemistry and polymer chemistry are perhaps primarily interested from the point of view of
the reaction products, organometallic and inorganic coordination chemistry from the side of
the catalytically active transition metal center; the methods of physical chemistry are often
extremely helpful in elucidating the mechanism of a catalytic process and, last not least, the
conceptions and computational results of theoretical chemistry may guide the catalysis
chemist to a better insight into the interactions of catalyst and substrates, at a molecular
level.

In particular, catalysis with well defined, soluble transition metal complexes (homogeneous
catalysis) plays an eminent role, not only as the medium of very important industrial and
laboratory processes such as hydroformylation, hydrogenation, dimerization, oligomeriza-
tion and polymerization of olefins, etc., but also as a model for heterogeneous processes, the
mechanism of which is inherenfly more difficult to elucidate directly, and even as a model for
certain natural enzymatic processes.

The present book 'deals with such well defined transition metal complexes and their use in
catalysis. Some comments concerning the layout of the book may be appropriate. The title
“Coordination and Catalysis” indicates a certain division into two parts. The interdisciplin-
ary character of the subject matter has the consequence that the practical chemist, inter-
~ ested in a certain cataiyuc reaction, very often is not familiar enough with the methods and
the special technical jargon used by his colleagues of the oontlguous disciplines. Such lack
of knowledge may result in a serious handicap during hterature studies, and may impede
a fruitful cooperation between the various interested groups. The first six chapters of
the book are designed to bridge this gap. They provide the basic background of coordination
chemistry as far as it is useful or even indispensable for a chemist working with transition
metal complexes. In presenting this theoretical background, we kept in mind that it is
more important for the practical catalysis chemist to understand the significance of the
information available from a specific theory than to be able to apply its often sophisticated
mathematics for his own computations.

The chapters “Atomic Orbitals” and “Transition Metal Ions” shall remind the reader
of his basic knowledge of atomic structure, with particular emphasis on d orbitals and
transition metals. Readers with a background in introductory quantum chemistry will be able’
to cover these two chapters rather quickly, but we hope that for others they might fill some
voids. Informations that should be known from other sources are sometimes treated only
very briefly. More space is given to certain details which, from the authors™ experi-
ence, are often not clearly understood. Thus we have tried to answer such elementary
questions as: What is the physical significance of the four-lobe representations of d orbitals,
so trustfully used by chemists? Why has one of the d orbitals a different-shape? What does
the labeling of the d orbitals (d,*_,?, d,., etc.) mean? Special care has also been taken to
explain the determination of the Russell-Saunders terms of a given d” configuration.

The following three chapters are dedicated to the three theories which are the basis for all
theoretical and semitheoretical work in the field: group theory, ligand field theory and mole-
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cular orbital theory. Most modern research publications relative to the matter are written in
the language of one or the other of these theories. The concepts of group theory are pre-
sented in this book in a rather pragmatic, application oriented fashion. The trained reader
may pardon the complete lack of mathematical rigour, but we have endeavoured to treat
this valuable device as a tool rather than as a science. In particular the understanding of
ligand field theory is greatly facilitated by some basic knowledge of group theory. And ligand
field theory, this lucid account of the influences of ligands on the electronic levels of a central
transition metal ion in a complex, is indispensable for the comprehension of the electronic
spectra and the magnetic properties of such a complex, as well as of its behaviour in catalysis.
Group theory is also one of the elements of the molecular orbital theory of trag’sition metal
complexes which, in our context, is used to account for all effects and consequences of
covalent bonding between the metal center and its ligands.

In the whole of this first part of the book, we have tried to emphasize the relation to practical
application, which sometimes gets lost in more sophisticated treatises. We hope that our
often deliberately simplifying treatment will stimulate the interested reader to proceed to the
more advanced texts which are listed at the end of each chapter (with increasing degree of
difficulty, if there are more than one on the same topic).

The application part of the book starts with the chapter “Some Aspects of Catalysis with
Transition Metal Complexes”, where the present knowledge (and sometimes opinion) con-
cerning the general course of a transition metal catalyzed reaction is discussed in the light of
coordination chemistry. This field of work is doubtlessly still in a state of flux, where
new hypotheses and suggestions are brought continuously into consideration. Under
such conditions it is perhaps ipevitable that the chosen presentation occasionally over-
emphasizes the authors’ view.

The following chapters on ‘particular catalytic reactions are organized in such a way as to
minimize overlap. Thus, although the accent is generally on mechanistic aspects, and in
particular on the processes occurring within the coordination sphere of the transition metal
center, the division is according to substrates rather than to metal centers. Reactions of
olefins, conjugated diolefins, carbon monoxide, 6xygen, and nitrogen are treated, each in a
chapter. The first three of these chapters are rigorously restricted to real catalysis, i.e.
omitting all stoichiometric reactions of ligands in the coordination sphere of a metal. Suf-
ficient technically important catalytic reactions are available to serve as illustrations for the
principles to be discussed. In the last two chapters certain concessions in this respect ap-
peared appropriate. The activation of molecular oxygen and nitrogen are processes pro-
duced by nature under mildest conditions, mostly in the presence of a transition metal
carrying enzyme. Chemistry is still at the very beginning of learning to understand, and
hopefully one day to copy, the work of Nature.

Obviously it was not possible, nor our intent, to include in the application part of the
book reference to all papers in the literature concerning the vast field of homogeneous
catalysis with transition metal complexes. Very often more recent papers are cited which
in most cases refer to the older original papers. This was done generally when the treated
material was presented more didactically in the more recent work. The suggested
“additional reading” at the end of each of the later chapters refers mostly to review
papers which permit the reader to broaden his knowledge on certain catalytic reactions
treated in the chapter. Here again, a somewhat subjective selection appears inevitable.
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Finally, we would like to indicate for which classes of readers the book has been conceived. -
Proceeding from the authors’ teaching experience at the Swiss Federal Institute of
Technology and at the University of Mainz, Germany, the book is addressed, on one hand,
to advanced students who wish to specialize in this interesting field. On the other hand,
however, we have undertaken a serious effort to make the book suitable for self-study,
considering those chemists who completed their studies several years ago and who wish
to keep up with modern developments. The expert research chemist working in the field,
last not least, will hopefully find sufficient stimulation in the selective compilation of
recent research work.

It is a great pleasure to acknowledge the valuable help of our friends and collegues,
who read parts of the book and offered many clarifying suggestions: Ph. Teyssié, University
of Liege, Belgium; J. Halpern, University of Chicago; L. Marko, University of Veszprem,
Hungary; B. Bogdanovié, Max-Planck-Institute, Miilheim, Germany; D. A. v. Bézard and
E. Spitzer-Wien, Swiss Federal Institute of Technology; Ch. Jungo, University of
Fribourg, Switzerland. Furthermore, we greatly appreciate the effort of D.R.M. Walton,
University of Sussex, England, in polishing our English.

We should also like to thaok the publishers of the following journals for permission to
reproduce various figures in the book: Journal of the American Chemical Society; Inorganic
Chemistry; Inorganic and Nuclear Chemistry Letters; our sincere thanks are also due to the
authors of the papers from which these figures were chosen.

This book was written at Monsanto Resegrch S.A., Ziirich, Switzerland. We gratefully
acknowledge the encouragement by its president, H. H. Zeiss.
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1. Introduction

Catalysis with soluble transition metal complexes has attracted very great interest over the
past few decades both because of the novelty of much of the chemistry involved and because
of its potential and, as already proven in numerous examples, practical applications. The
starting point of this development was probably the discovery by O. Roelen [1] in 1938 of
the reaction of olefins with carbon monoxide and hydrogen to form aldehydes (the “oxo
process” or hydroformylation), where a soluble cobalt carbonyl complex served as catalyst.
Many other homogeneous reactions were subsequently discovered, some of the most impor-
tant of which are the oxidation of ethylene to acetaldehyde on a palladium complex
(“Wacker process™) [2], the carbonylation of methanol with a rhodium species 3], the cyclo-
oligomerization of conjugated diolefins on nickel [4], and the dimerization [5], oligdémeriza-
tion [6] and polymerization [7] of olefins with soluble Ziegler catalysts.

From a technical point of view, this development was challenged by the availability, at rea-
sonable prices, of olefins after the displacement of coal by natural gas and oil as the most im-
portant feedstocks for the chemical industry. In the nineteen forties, coal-based acetylene
was still a major raw material in chemical processing (especially in Germany), useful because
of its high reactivity. Gradually it has been replaced by ethylene and other olefinic com-
pounds which are less expensive, but where superior catalysts have to compensate for lower
reactivity. Another impulse came from a general trend toward milder reaction conditions.
The more “classical” processes using heterogeneous metal oxide or metal catalysts are often
termed “capital-intensive”, meaning that high capital has to be invested per ton of product.
This is mainly due to the high pressures and temperatures usually required, with the often
disagreeable consequence of reduced selectivity. Moreover, relatively low conversions per
pass frequently necessitate the separation of product from highly diluted mixtures, and re-
cycling of the unreacted components. '

Homogeneous catalysts, on the other hand, usually work at low pressure and temperature,
with high efficiency, and sometimes with an amazing selectivity. Thus, for instance, the
manufacture of acetaldehyde from ethylene and oxygen in an aqueous catalyst system by the
Wacker process operates at the boiling temperature of water at pressures of only a few
atmospheres. This process has displaced the older vapor-phase oxidation of ethyl alcohol in
the temperature range 375 to 500°C. An example of selectivity is the cyclooligomerization
of butadiene which can be oriented towards cyclooctadiene or to cyclododecatriene, by only
minor variations of the nickel catalyst (20 °C, normal pressure).

Nevertheless, soluble transition metal complexes are by no means expected to replace the
heterogeneous metal oxide and metal catalysts in all domains. Their robustness and easy
regeneration guarantee them a secure future in catalytic chemistry. However, experiences
obtained with soluble catalyst species have also had an impact on heterogeneous catalysis.
Most solid catalysts are non-stoichiometric, ill-defined materials; moreover, the fact that the
reactions take place at a gas-solid interface implies certain physical complications, such as
rate control by mass transfer, influence of pore volume, ezc. These conditions are not
favorable for a mechanistic interpretation of heterogeneous processes. Work with well-
defined soluble complexes has contributed greatly to the understanding of the basic prin-
ciples of transition metal catalysis which may be assumed to be common to heterogeneous
and homogeneous processes. The Fischer-Tropsch reaction, for instance, which comprises



2 1. Introduction

the formation of hydrocarbons from carbon monoxide and hydrogen on heterogeneous
cobalt or iron catalysts, and which was very important during the coal-based feedstocks
period, is to-day at least partly understood in terms of individual steps recognized in the
course of the homogeneous hydroformylation of olefins [8]. The Fischer-Tropsch, and
related reactions may revive when the oil reserves decline. The related synthesis of methanol
from carbon monoxide and hydrogen is of even more significant interest, as a step in one of
the routes from methane (earth gas component) to the easier transportable methanol, which
may become an important export capacity from the Middle East in the nineteen eighties [9].
Evidently the discovery of a soluble system for the synthesis of methanol from carbon
monoxide and hydrogen would constitute a great step towards its mechanistic elucidation.
On the other hand, the ideas gained in the work with soluble complexés have, in certain
cases, even stimulated systematic variations of heterogeneous catalysts [10]. ’ .
Although the discovery of the first soluble catalysts was, presumably, more or less accidental,
modern catalysis research appears to be progressing towards an intelligent synthesis of
contributions from many sources and from different disciplines of chemistry. In particular,
it has benefited greatly from two major scientific developments of the past decades. On one
hand, transition metals attracted growing interest in preparative coordjnation chemistry as
a great number of new compounds became available, while on the other hand important
advances in theoretical inorganic chemistry (particularly in ligand field theory) influenced
the thinking of catalysis chemists. As a result, more and more attention was devoted to the
significance of coordination sphere symmetry of a catalytic transition metal center and of the
distribution of electron density therein. It was recognized that the metal centers are in a
sense polyfunctional, possessing a multisite capability for forming several electron pair bonds
in clearly defined geometric juxtaposition, thus predisposing reactants within the framework
of a complex towards specific interaction. The influence of certain atoms or groups of atoms
attached to a metal center (the “ligands”) on the activity of the latter was observed and
traced back to the fact that the ligands may either donate electron density to, or withdraw it
from the metal. .
Two different approaches have led to the present situation of knowledge and concepts. The
first, of a phenomenological nature, was aimed at the effectiveness of catalysts and consists
essentially of varying parameters and measuring activities. This procedure, with prominent
industrial support, has been very successful in several occasions. Thus, the production of
aldehydes, acids, esters, etc., by the oxo process and related reactions was able to make “big
money” during the many years until a well-argued suggestion concerning the mechanism was
advanced in 1961 [11]. The same criterion holds gaod for low pressure polymerization of
ethylene with heterogeneous titanium/aluminum catalysts discovered by Ziegler in 1952
[12], by which millions of tons of poiyethylcnc weré procuced world-wide, prior to 1964
when-a theoretical interpretation of the process was offered [13], and before the use of
analogous soluble catalysts permitted a mechanistic interpretation [7].
The second path of research, located more within the University sphere, is concerned more
with the manner in which a catalyzed reaction proceeds. This, the more basic approach,
consists of the determination of the sequence of the elementary reactions within the co-
ordination sphere of the metal center in the course of a catalytic cycle, measurement of rate
.nd equilibrium constants for these individual steps, isolation or spectroscopic identirication
of intermediates, and determination of ‘the valency state and coordination number of the
‘tive metal center, erc. '
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Much progress has also been achieved by an imaginative transfer of ideas and experience
from one catalytic process to another. An illustration is provided by the Ziegler catalysts.
The origihal discovery referred to a combination of an aluminum alkyl and a transition
metal salt (in particular triethylaluminum and titanium tetrachloride) as catalyst for the
low pressure polymerization of ethylene. While initially the aluminum component was
considered as the catalyst, and the transition metal as a “cocatalyst”, careful fundamental
work in several laboratories, with related soluble systems, led to the conclusion that the
transition metal is the active center, and that the aluminum alkyl can carry out one or moré
of several tasks: It can alkylate the transition metal center, forming an active metal-carbon
bond. If the metal alkyl is unstable, and is homolytically cleaved, the aluminum alkyl
provokes indirectly reduction of the transition-metal ion, thus bringing the latter eventually
into a valency state required for catalysis. Finally, the aluminum alkyl can form a complex
with the transition metal center, operating as an activating ligand. This multipurpose action
of aluminum alkyls in Ziegler systems once recognized, it was a logical corollary to use these
systems not only for polymerization, but also in other cases where the in situ formation of
low valent and/or alkylated transition metal species was required for catalysis. In this way,
Ziegler systems have found ample-application in many catalytic reactions, such as the
dimerization of olefins and of conjugated diolefins, metathesis, and even hydrogenation of
olefins.

From these few introductory remarks it will be evident that our treatment of the phenome-
non catalysis by coordination compounds of transition metals will emphasise those processes
occurring within the coordination sphere of the metal center more than the technical aspects
of the catalytic reactions. In this sense, we considered it useful to initiate the book with a
basic consideration of the electronic structure of transition metal ions, and with the theoreti-
cal concepts underlying their coordination chemistry which have contributed greatly to the
understanding of transition metal catalysis. The most essential concepts stem from group
theory, ligand field theory and molecular orbital theory. With regard to the latter two it
should, however, always be born in mind that they represent approximations, and that our
exact knowledge of bonding in coordination compounds (and of chemical bonding in gener-
al) is far from being complete. Nevertheless, these theories have provided us with extremely
useful interpretations of certain aspects of the bonding in transition metal complexes, and of
properties of the complexes depending thereupon (e.g. spin pairing of electrons in d orbitals
and magnetism; directed valency and symmetry; electron distribution and activity; etc.).
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2. Atomic Orbitals

In this section we shall summarize briefly the quantum mechanical treatment of the hydro-
gen atom. This will remind the reader of the origin of our working knowledge about the
geometry and directional properties of atomic orbitals.

2.1. Wave Equation and Wave Functions

In 1926 the chemist’s electron was displaced by the quantum mechanicist’s electron. The
chemist’s electron was a small particle, moving in a defined circular or elliptic orbit around
the nucleus of an atom (Bohr-Sommerfeld model). Quantum mechanics tells us that the
electron is comparable to a standing wave which can be described by a wave equation. The
starting point for this development was de Broglie’s wave theory of matter (1924), which was
based on theoretical as well as metaphysical considerations. At that time, it had become
evident that light, apparently well-defined as a wave process since Fresnel, can also be des-
cribed as a corpuscle. The belief in a general harmony in Nature led de Broglie to the in-
genious assumption that a wave-particle dualism would also apply tb matter. He formulated
the relationship between wave length A, mass m, and velocity v of a particle:

A= = ' (2.1)

m-y

where h is Planck’s constant. The formulation of a wave equation for the electron by
‘Schrédinger (1926) was a logical corollary of these ideas. Experimentally, the wave-
particle dualism manifests itself through the observation of both diffraction patterns and
interferences, with particles (electrons, protons, etc.) as well as with electromagnetic radia-
tion (light, X-rays).

Fortunately some of the propérties of the electron, interesting for the chemist, are such that
they still may be rationalized by the classical concept, and in view of the wave-particle
dualism we are allowed to do so whenever it appears convenient. Other properties, however,

Fig. 2.1. The classical standing wave; fundamental wave
(a), and first (b) and second (c) overtones.




