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PREFACE

The theoretical study of the physical properties of fluids (liquids and gases) has
made significant advances in the last 30 years. The progress has been due chiefly to a
three-prong development in (a) molecular theories based on the methods of statistical
mechanics, (b) numerical simulations of molecular movements on fast electronic com-
puters, and (c) scattering experiments with x-ray, neutrons, and other probes. Earlier,
simple physical models were used to represent spherical molecules, such as argon.
Gases like these are not of interest to practicing engineers. This state of affairs persisted
into the 1950s and 1960s. In the 1970s, the situation improved considerably: fluids with
polar forces (water, ammonia, and alcohols) and nonspherical shapes (polyatomics and
hydrocarbons) were studied. In addition, charged particles (plasmas and ionic solutions),
long-chain molecules (polymer solutions), and liquid metals were investigated. Studies
of these "realistic” fluids were made possible by a combination of factors: development
of the probability distribution function theories in statistical mechanics (e.g., the pertur-
bation theories) and refinement of computer simulation methods (Monte Carlo random
walks and molecular dynamics solution of the equations of motion). Currently, the new
methods of investigation are expanding rapidly into ftuid materials such as liquid crys-
tals, colloidal solutions, biological fluids, polyelectrolytes, amphiphilic molecules, and
polydisperse systems. Diverse phenomena found in the fluid state are being examined,
such as phase transition, chemical reactions, adsorption at interfaces, and transport
phenomena.

These new developments have made the field of molecular theories not only
interesting but also "useful" to engineers. However, due to the interdisciplinary prepara-
tion and the requisite mathematical sophistication, the new information remained inac-
cessible to many segmenis of the engineering community. The situation has improved
markedly since the 1970s and the uptake continued into the 1980s, as witnessed by the
increased number of courses offered in engineering colleges on molecular thermodynam-
ics and statistical mechanics, as well as seminars held at professional meetings on
molecular-based studies of fluids. At the same time, there are needs for textbooks written
for an engineering audience. Books in statistical mechanics were conventionally written
for theoretical physicists and chemists. Although many are definitive works in the field
(see Appendix D. Bibliography), few are suited as introductions to the subject. Others
were devoted to specialized fields not of interest to engineers.

With this in mind, we have written this book to address a different need, the
need to bring the molecular methods to engineers. Our presentation is introductory.
Thus many subjects of prime interest to researchers were eliminated. It is a difficult, or
even impossible, task to keep molecular theories on an elementary level. Compromises
will have to be made. We are at the same time application-minded. Whenever possible,
applications of interest to chemical engineers are included. We have presented addi-
tional material at the end of chapters on matters such as calculation of the ideal-gas heat
capacities and mixture vapor-liquid equilibria for polar fluids. Due to the gap between
theory and practice, some compromise of rigor will be inevitable, and we are aware of
the risks involved. It is hoped that future developments will make these sacrifices
unnecessary.

The materials in the book were the outgrowth of lectures given for the past seven



years in a graduate course— the Modern Thermodynamics Seminar. The topics varit?d
from year o year, reflecting the changes in interests and student needs. The main
themes, however, have always revolved around the molecular distribution functions; i.e.,
treating the structure of matter in terms of the probabilistic distributions of molecules in
space and time. This is the subject of statistical mechanics. The historical developme_ms
in the statistical mechanics of liquids could be summarized as (a) the partition function
approach, (b) combinatorial studies, and (c) distribution function methods. Recent work
has gravitated toward the last option, although the other approaches are being vigorously
pursued at the same time. Partition functions are known explicitly only for very simple
systems, such as the ideal gas and Ising models. For more complex systems, the
approach is ineffective. Combinatorial studies were carried out, e.g., for mixture and
adsorption problems (such as arrangements of polymer molecules on a lattice). The
presence of sophisticated interaction forces soon taxes the combinatorial method to the
limit. Distribution functions imply and implicate all these methods and more, since they
are defined for any systems through a probability distribution. In principle, at least, the
functions could be used for structural studies. A crucial connection is the probing of the
molecular structure of matter by the scattering of x-ray and neutrons. They yield the
probability distributions. These experiments lend physical support to the distribution
functions. On the other hand, thermodynamic properties can be easily calculated from
the probabilities. Three routes are available for this task: the energy equation, the virial
equation, and the compressibility equation. These relations make the distribution func-
tions highly useful in properties studies.

The first six chapters lead up to the integral equations. These equations are used
to produce the distribution functions. Some model potentials— hard spheres and
Lennard-Jones molecules— are examined. We then proceed to polar fluids and electro-
lyte solutions. The successful liquid state theory— the perturbation theory is introduced.
For polyatomics, we offer one of the most promising approaches— the interaction site
model. Interfacial behavior is investigated in a chapter on adsorption. Selected home-
works are included in the chapters. Some of these are "drill” exercises: the others are
projects. To supplement the in-class experience, reading of current literature and possi-
bly a research project applying what has been leamned is recommended. In my seminar
course, projects on behavior of fluids such as liquid crystals, biofluids, electrolyte solu-
tions, and molecular sieves were assigned.

During the course of preparation, I have benefited by discussions with colleagues
and students. Valuable suggestions were offered by P.T. Cummings, C.K. Hall, H.D.
Cochran, and D. Henderson. Proofreading was done by J.L. Savidge, R.L. McFall, and
W.M. Coleman. I particularly want to thank J.M. Haile and F.T.H. Chung for careful
reading of the drafts and offering valuable suggestions. Some of the materials presented
in this book are fruits of work by J.M. Haile, F.T.H. Chung, L.H. Landis, M.R. Brulé, S.
Watanasiri, M.H. Li, and S.H. Brown. I thank them for their generous consent. Part of
a sabbatical leave was devoted to the writing of this book. For all the help, I alone am
responsible for any errors or omissions that remain. The choice of subjects is by neces-
sity dictated by the author’s familiarity with the topic material. One must be constantly
vigilant in keeping current on the new developments in molecular theory. However, if a
book is to be written at all, it has to start and to stop somewhere. The author has since
developed a deeper sense of appreciation for the sayings of Jhwangjoe (circa 275 B.C.)

"To pursue knowledge with one's lifetime is to span the boundless by
the limited... Therefore, by following the middle way, you may main-
tain your health, replenish your life, care for the ones you love, and
live out your years." — Inner Chapter: "The Regimen of Life"

Norman, Oklahoma Lloyd L. Lee
Fall 1987 DHD.
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CHAPTER I
INTRODUCTION

Democritus of Abdera: " ..008&v xpfino patTny yiyveton, GAAL
navia €k A0you Te Kol Om” avaykny"*

In this chapter, we set forth the microscopic view of matter. A material system is com-
posed of an enormous number of particles, for example, the molecules. We call this an
N-body system. The molecules interact with one another by intermolecular forces. The
basic question in molecular physics is the relation between molecular interactions and
the bulk properties of the system. The answer is to be found in statistical mechanics.
Staustical mechanics is a method of accounting whereby collective microscopic states
are averaged, resulting in macroscopically measurable quantities. As the name implies,
mechanics deals with forces, and statistics is a procedure of averaging. Thus statistical
mechanics offers a prescription for averaging the molecular forces in order to obtain
values for the gross properties. The method is applicable to the study of properties of
fluids, solutions, plasmas, and crystals alike, In this chapter, we shall establish the basic
terminology. The mechanical variables are called dynamic variables. They are func-
tions of the positions and motions of many bodies. The velocities and configuration
constitute the phase space. Hamilton’s equations of motion are derived that describe the
time evolution of the system in phase space. The description is based on Newtonian
mechanics. However, a summary of quantum mechanics is presented in Section 1.5 for
comparison and later use. Other statistical concepts, such as the Gibbs ensembles and
distribution functions, will be introduced in following chapters.

I.1. The N-Body System

An N-body system is a collection of N material particles. These particles could
be molecules, charged ions, or colloidal particles. In our approach, material is con-
sidered as composed of spatially discrete units. This view is in contrast to the contin-
uum view where matter is continuous and homogeneous. The latter view is called
macroscopic. The continuum view of matter is useful in a number of engineering studies
such as fluid mechanics and heat transfer. However, the microscopic view is used for
the study of properties because it is necessary to understand the specific forces of
interaction among the particles that compose the material. When Newton’s laws of

*Things do not happen fortuitously, but out of reason and necessity.
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2 Molecular Thermodynamics

motion are applied at the molecular level, the treatment is called classical. When neces-
sary, quantum mechanical corrections are incorporated. This happens at small de Bro-
glie wavelengths (see below). For the fluids we study, a classical description is adopted

whenever permissible. .
The selection of the particles, whose collection constitutes the N-body system, is

dictated by the particular physical process taking place. In general, we select a system
of particles with maximum unity so that their internal structure and degrees of freedom
have negligible effects on the physical process in progress. We illustrate this point by
several simple examples.

Example 1. Motion of a Pendulum in a Gravitational Field

For a small ball attached to a weightless cord, the particle chosen to represent the
physical system is simply the ball itself. The internal structure of the ball (whether it is
made of an alloy of metals, or an aggregate of 10%* molecules) has no direct bearing on
the motion of the pendulum.

Example 2. The Harmonic Oscillator

For a spring-and-block assembly, the particle is identified as the block. The
spring is replaced in the physical representation by its Hookesian force.

F=—-kx (1.1
ie.
Force = — (Spring constant)(Displacement)

Example 3. Migration of Charged Particles in an Electric Field

For the system depicted in its simplest form, the particles chosen to represent the
system are the bodies carrying the electric charges. They may be dust particles, plasma,
or colloidal particles in a solution.

Example 4. Compression of Gas in a Cylinder

The particles chosen in this case are the gas molecules inside the cylinder.

L.2. The Hamiltonian and the Pair Potentials

The particles in an N-body system are in constant motion undertaking movements
in all directions. The total energy of the system, TE, is calculated as the sum of the
kinetic contribution, KE, and the potential contribution, PE.

TE = KE + PE @1

‘The Hamiltonian, Hy, of the system is defined to be its total energy, TE, and is a func-
tion of the kinetic variables (i.e., the linear momenta po) and spatial variables (e.g., the
center-of-mass positions r; of the particles)

Hyp1,....PwmT, ..., TW)=KE + PE (2.2)

This is the Hamiltonian for an isolated system, i.e., there is no interaction with



I. Introduction

surroundings, such as an isothermal bath.

KINETIC ENERGY

Kinetic energy is associated with the motion of particles. It is separated into
translational, rotational, and vibrational modes.

Translational Energy
1 ¥ p?
KE, ==Y — (2.3)
(=7 z_",l -
Rotational Energy
N
KE, = é—z alo 2.4)
=1
Vibrational Energy
N n
KE, = —1-): Y mold; (2.5)
25 s

where p; is the momentum, m; the mass of particle /, /;, the moment of inertia, o; the
angular velocity, o, the frequency of vibration of mode j in molecule i, a;; the amplitude
of vibration, and n" = 3n -5 for linear molecules and 3n —6 for nonlinear molecules.
These classical expressions also have their quantum counterparts (see below).

POTENTIAL ENERGY

Potential energy arises due to interactions among particles and between particles
and surroundings. The strength of interaction is dependent on the distances that separate
these particles. The total potential energy, Vy, is a function of the spatial configuration,
¥ = {r, ... ry), of the particles. The position of particle i, as measured from the ori-
gin, is a vector r; = (x;, y;, z). Therefore the configuration r" is a vector of 3N dimen-
sions. For nonspherical molecules, one must specify the angles of orientation for all N
particles, {w;, . . . .0y }, where w; is the set of Euler angles (6, ¢:, %) of molecule i ©
is the polar angle, ¢ the azimuthal angle, and % the rotational angle. For structured
polyatomics such as the hydrocarbon n-butane, additional coordinates are needed to
uniquely determine their conformations, e.g. the cis, rans, gauche, and cyclic arrange-
ments. In contrast to the kinetic energy, which depends on motion, the potential energy
is dependent on the spatial variables of the molecules. To account for the potential
energy of the N bodies, one assembles the particles into clusters of singlets, pairs, tri-
plets, etc., and considers the total PE to be a sum of one-body energies, u(®, two-body
energies, u®, three-body energies, u®, etc.

N N
Var", o) = 3 uDre) + I uP(r, 00,0, (2.6)
=1 1=

N
+ 333 ur, 0,000 + -+ 0

1=i<j <k

We have exhibited explicitly the position and angle variables. In case there are other
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spatial variables, they should also be included. The one-body potentials u arise due to
external fields (for example, an electric field). The pair potentials u® are evaluated by
taking one pair of molecules at a time and measuring their interaction energy while iso-
lated from all other molecules -- i.e., the interaction energy between a pair of particles is
assumed to be undisturbed by the presence of a third particle. For example, in a system
of four particles (N=4), we count the singlet energies u®(1), u(2), ¥"3), and u@),
and the pair energies ¥®(12), u®(13), uP(14), 9(23), u(24), and u@(34). However,
in dense fluids, the sum of all these terms is not sufficient to account for the total energy
of interaction. There are additional energies associated with the residual three-body
forces. These forces are in excess of the sum of one-body and two-body forces. Thus
we should also include ¥®(123), u®(124),..., and u®(234). Note that these higher-order
forces contribute energies above and beyond the sum of pairs. The remainder is carried
over to the residual four-body energies, u®, excesses over the sum of energies of tri-
plets. Finally, 4™ is the excess energy over the sum of energies of (N-1)-tuplets and is
not the same as Vy, the fotal potential of the N-body system.

Pairwise Additivity
It is often assumed that the total PE is adequately given by the sum of two-body
energies. This is called the pairwise additivity (PA) assumption

N
VN(I'N,(DN) = ZZ u(z)(l'i,(l)i,rj,(l)j) (27)

< J

This assumption is valid only for dilute fluids. For argon, an accurate interaction poten-
tial valid in the liquid state is the Barker-Fisher-Watts [1] potential. It contains three-
body forces. However, PA is extensively used in theoretical work to simplify treatment.
Under this assumption, the Hamiltonian is

N p2 N
Hp"r" o) = 3 o= + T3 wP(r.0r,0) (2.8)

1 J i<
For simplicity, we shall write u(r) for «®(r). In real molecules the interaction potential
is usually quite complicated. Quantum mechanical calculations exist for the most part
for relatively small molecules (e.g., hydrogen [2], helium [3], and water [4]). On the
other hand, simplified models are used in theoretical work. Some commonly used
potentials are listed below. A detailed discussion on pair potentials is given in Appendix
A,

The Ideal Gas
ury=0 2.9)
The Hard Spheres (HS)

u(r) = +oo, r<d (2.10)
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where d= hard-sphere diameter.
The Square-Well Potential (SW)

u(r) = +oo, r<d 2.11
=g, d<r<i
=0, rzAi

where d= repulsive diameter, A= attractive diameter, and e= well depth.

The Inverse-12 Soft-Sphere Potential (S512)
— 40812
u(r) = 4¢( . ) (2.12)

where 6= collision diameter and €= energy parameter.

The Lennard-Jones Potential (LJ)
¢]
u(r) = 4e [(7>12 —(%)6} (2.13)

The Kihara Potential (KH)

u(r) = +oo, r<d .14

e -]

where d= the hard-core diameter.

RELATION BETWEEN THE FORCE AND THE POTENTIAL ENERGY

For a conservative system, the force acting on the system is given by the ncga-
tive gradient of the potential energy

F = —Vu(r) (2.15)

This relation is general.

Example 1. The Gravitational Field

The gravitational field of the earth is conserved. We know from mechanics that
the potential energy is
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PE = u(h) = mgh = (mass)(gravity)(height) (2.16)

Therefore the force, according to (2.15), should be
0 = 2.17)
F=-Vuh)y=- ﬁ(mgh) =—mg (2.

i.e., F = —mg; this is preciscly the expected result. The negative sign indicates that the
force is acting downward (opposite to the direction of k).

Example 2. The Spring Force

A frictionless spring is a conservative system. Its potential energy is known to
be

PE = u(x) = %Ioc2 = %(spring constant)(displacement)® (2.18)
Therefore the force on the spring is

F=- iu(x):—kx (2.19)
ox

This is the well-known Hookesian force.

1.3. The Phase Space

The dynamic state of a system of simple (structureless) particles is completely
determined by specification of the positions, r;, and momenta, p; (i=1,...,N) of the N par-
ticles composing the system. For a threc-dimensional system (with x-, y-, and z-
coordinates), these 2N quantities (N r;’s and N p,’s) constitute a 6N-dimensional space
with coordinates

(rxl, Tyl Tz1s Px1s Py1s Pz1s--s TaN> PxNs pyNs P:.N) (31)

This space is called by Gibbs (5] the phase space (or the I'-space). Each point in the
phase space corresponds to a particular dynamic state of the system with positions and
momenta of the N particles specified by the coordinates of this chosen phase point.
Since the particles are in constant motion, the movements of N particles at subsequent
instants trace out, in the phase space, a continuous trajectory, which represents the his-
tory of the states of the system. All dynamic properties of the system can be inferred
from its phase space trajectories. For example, the total energy, the total momentum, the
collision rates, and the diffusion constant could all be obtained from the trajectories.
The phase space is of great importance in statistical mechanics. We must familiarize
ourselves with this concept. Let us examine some sample systems.

Example 1. One dimensional Harmonic Oscillator

For the spring-and-block system described earlier, the movement is in the x-
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direction., The number of particles is N=1. The phase space is then two dimen_sional
with coordinates (x, p,). The motion of the block obeys the law of conservation of

energy (assuming no frictional loss):

2
—lloc2 + Lo constant 3.2)
2 2 m

The trajectory of this particle in the phase space (x, p,) is therefore described by an
ellipse.

Example 2. Pair of Charged Particles in Three-Dimensional Space

Since N=2, the phase space is 12 dimensional, with three components in the x-,
y-, and z-directions for each of ry, p;, rp, and p,. A geometrical representation of the
locus of the phase points of this system is not possible. However, the physical idea is the
same as in the above example,

GENERALIZED PHASE SPACE

For polyatomic molecules the kinetic energy now comprises, in addition to the
translational mode, rotational and vibrational modes. Thus KE contains

AR A A X S
3T TR e 6

To completely specify the dynamic state of the system, we need fix additional variables
-- i.e., the angular momenta, J; (3N variables)*, the vibrational frequencies and ampli-
tudes, w;a; (n'N variables). Now the Hamiltonian is of the form

TE = KE + PE = Hy(p", IV, (0a)™, ) (3.4)
The dimensions of the generalized phase space are
BN+3N+n'N+3N=(n"+9N (3.5)

For anisotropic molecules, the potential energy also depends on the 3N Euler angles of
the molecules. The phase space will have (n’ +12)N dimensions

Hy = Hy(p", IV, (@)™, rV, o) (3.6)

where @ =(w,,0,,....,0y) and @; = (8;, ¢;, %) are the Euler angles of the orienlation of

*Note that the angular momentum, J; = {J,,, Jiy, Jiz}, has three projections in the x-, y-, and
z-directions. J; is the total momentum of molecule i irrespective of its symmetry. Internally,
spherical top molecules have only one value for the moment of inertia (i.e., Ly =1y, =1,)), sym-
metrical top molecules (e.g. NH;) have two values (/,, =l,, and /,;), and asymmerric molecules
(e.g. HyO) have three values (/,, /,, and [,;). They do not affect the vectorial nature (three-
dimensionality) of the external total angular momentum unless the external coordinates coincide
with the symmetry axes of the molecule (in which case one or two components are zero.)
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molecule i. (We have used the symbol w for both vibrational frequencies and Euler
angles in deference to convention. The context will make the distinction clear.) In case
other conformational distinctions are present, further augmentation of the dimensionality
of the phase space will be required.

L4. The Equations of Motion

In this section we shall derive an equation of motion which describes the time
evolution of a system of N simple particles. Since the particles are in motion, their posi-
ttons, r;, and momenta, p;, are functions of time:

ri=r() 4.1)

P: = p,'(l), i=1,2,.‘., N

As in the mechanics for macroscopic bodies, the motion of the individual particle i of
mass m; is determined by Newton’s second law:

mn; = F,‘ (42)

di?

where F; is the force acting on particle i. For conservative systems, the force is derived
from a potential energy function. For simple systems with pair interactions only

N
Fi=-% Vu(ry), ryj=I-r| 4.3)
i

where u is the interaction potential, and the gradient V is with respect 10 r;. Since the
momentum

_ dl'l'
Pi=m— 4.4

(4.2) can also be written as

dp; N
-—E = —j§ Vu("l'j) (45)

For structureless particles, Hy is a function of p; and r: Hy =Hpp", r"); we can form
the partial derivatives

aHN _ -2‘_
p  m “6)

and



