- B R W % -

Linux#2/Fix it

(RIhR)
" / @
LinuXx

Programming .’ Example

The

// Fundamentals

[A T i

China Machine Press

BRI

inux

L

English reprint edition copyright © 2005 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Linux Programming by Example: The Fundamentals (ISBN 0-
13-142964-7) by Arnold Robbins, Copyright © 2004.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice Hall PTR.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

A 455 SCRZENAR i Pearson Education Asia Ltd #2AUNUM Tl R IRR HIMR . KL HARE
BEFT, THRUMEMEREHISHBEBHE,

R THEARLMERN (FREPEFE, B 1ENTREMTEEEX) 4
K17,

F 4305 H Pearson Education (34 & HIRER) M WIRE, TAREENEE
ED

IR, RALLER.
FHEEME RTREBNEEA

FBRRALEI2S . B 01-2005-3619
EBERMEB (CIP) ¥iE

LinuxBFFi%it (FEXM) / () PES (Robbins, A.) ¥. —Jb3(: LR T L HAREH:,
2005.8 ’

(ZHERRA5E)

$4EX: Linux Programming by Example: The Fundamentals

ISBN 7-111-16864-X

LL- IL ¥ IL Linux3#E &% — BRFIEIF - %X IV. TP316.89
HE R A B B ECIPEIEZ F (2005) $0751055

PLB T AR AL GERwRRE 57 EA#22E MBS 100037)
HESHE.: BiEH

AL L HESLEN R ENRY - Bt E AL R TR R AT
200548 A 1IR & LIKEN R

787mm x 1092mm 1/16 - 45.25E1%

EN%k: 0001-3 000fH

Efr: 79.005T

EE, mAHRT. AR, BA, dddRTHiER
APk . (010) 68326294

HARE 8IS

YZE%HW,ﬁ@%ﬁ%ﬁ%ﬁ#ﬂ%ﬁ%ﬁm#*ﬂﬁ,Eﬁﬁﬁiﬁﬁ%ﬂ%%%
?@ﬁﬂﬁT%%ﬁ%ﬁ%;&E%ﬁ#%%%,ﬁ%ﬁ&%ﬁﬁ*ﬁﬁ%#+§$@&%¥
ﬁ‘ﬂ@m%oﬁﬁﬂﬁmﬂﬁ¢,%EWF%%5&€%@*@%%%%%,Hﬁﬂ%ﬂ*
WW§$M%4WW§%ﬂmﬂ&%mﬁﬁﬁ,m%ﬁﬁémﬁﬂﬂi%ﬁ,$ﬁ§ﬂ7m%
%ﬁ%,ﬂﬁﬁT%*mﬁg,%ﬁﬁ#*ﬂﬁ,Rﬁﬁ#%¢ﬁ,£mﬁ#xﬁﬂﬁﬂm%
bk B

ﬂﬁ,Eéﬁ%ﬂmkmmﬁﬁT,ﬁﬁ%ﬁﬁﬂ?ﬂﬁ@ﬂﬁ,ﬁ?ﬂkfwﬁiﬁﬁ
ﬁwoﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬁﬁﬂ%%ﬂﬁ,&%%ﬁ;ﬁ?ﬂﬁﬁ%ﬁﬁ&ﬁﬁ&%ii
ﬁ%ﬂ%ioﬁﬁﬁﬁﬁﬁ*ﬁﬁﬁﬁﬁﬁ‘Mﬂkﬁﬁ&%ﬂ&T,%@%ﬁﬁ@iﬁﬁﬁ
ﬁﬂﬂ%ﬁﬁ%ﬂ+¢@ﬁﬁm%ﬂﬁﬁ%ﬁﬁgﬁﬁ%§2%o@%,mﬁ—ﬂ@%ﬁﬁﬁ
ﬁﬂﬁﬁ%ﬁﬁ@H%ﬂﬁﬁ$ﬂ%ﬁ@@ﬁﬁ%ﬁﬁﬁm,&%5ﬁﬁﬁﬁ\Eﬁﬁﬁmﬁ
R—IRRFN LR ZEE.

HUAR Tl B it 2 E S0 1S B AR A TR RINE “HREABFTRS . H 19984E 71 44,
ﬁﬁﬁﬁﬁ%lﬁiﬁﬁETﬁﬁ‘ﬂﬁﬁ%ﬁ%ﬁﬁkoﬁﬂﬂﬁwxm%ﬁ,ﬁm5
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ it R E LR A TRL TR
H%%ﬁ%%,MEM@%%&E%&H¢ﬁﬁ&hmﬂwm&hwWw,Km@Mme
&w%kmzim~ﬁ§&¢%,u“HﬁMﬂ#&#”%B%Mﬁ,ﬁﬁ%#ﬂ\m%&&
. KEALEMHE, BEARTXEABHRLIEA,

“ﬁﬁﬂﬂ%&ﬁ"mﬁﬁlﬁﬁﬂT@W%%%W%ﬁﬁw,@WW??K&%@T*%
mﬁﬂﬁﬁyEK%%%%@ETﬂﬁﬁﬁﬁ%Iﬁ;ﬁﬁ%%ﬁ%&ﬁﬁ%&%ﬁﬁﬁ*@
m%%,ﬁmﬁ?ﬁﬁﬁﬁm*ﬁ$ﬁﬁoﬁ¢u“Hﬁﬂﬂ%&%”ﬂﬁﬁﬁTﬁﬁ?ﬁ ,
ﬁ%#ﬁ&ﬁ?*WiTﬁﬂmﬂm,#ﬁwgﬁﬁ%m%Eﬁﬁﬁﬂﬁﬁﬁﬁ,%ﬁﬂiﬁ
I"ERBITT T REHIER.

%%%ﬂﬁﬁ%@fﬁ%ﬂﬁﬁ&ﬁm%ﬁﬁﬁ,ﬁﬁﬁﬁﬁ%ﬁﬁﬂﬁﬁ%%*ﬂﬁﬁ
ﬁ$A~¢%mm&°%%,@ﬁ&ﬂ%ﬂkmﬁﬁﬁmﬂﬁ,E“ﬁﬁ&ﬁ”%&ﬂﬂZT
mmzﬁ§ﬂmH%Mﬁﬁ=%“Hﬁﬂﬂ#&%”Z%,Hﬁmmm&ﬁ,M$ﬁﬁﬂm
o EmRBE , A, SIHAEEFNSEMEH “Schaum’s Outlines” RFIAML “LR2
ﬁ#ﬂ%@%ﬂVo%Tﬁﬂﬁiﬁiﬁmﬁﬁﬁ,ﬁﬁ&%TEﬂﬂ%%ﬁﬂ%Wﬂﬁ%,ﬁ
ﬁﬁa%ﬁT*@ﬂ%%‘%ﬁﬁé‘ﬁﬁk%‘@%ﬂﬁi#‘iﬁkﬁ\hﬁﬁﬁii\
mﬁk%‘MEﬁ#‘*Eﬂ&k#‘%ﬁﬁlﬂk#‘ﬁﬁﬁﬁﬁﬁ*EA&*%\%ﬁ
ﬁﬁﬁfﬁi\%ﬁmﬁﬁé‘¢Mﬁ#\ﬁm$ﬂIﬁ$‘ﬂMﬁ#‘m%I¥%‘*@@

v

K15 BREMIFNE R OSENEAKRENETILAETELNE N QRN ELZEAR %
KIEGRRALK", ARIMBEEEELMBREE.

X =2 NS R M R B E ERAR A R SMR B B B, AEARRITELRAR T
B EITER., HbhiES8HEAHM. L T., Stanford, U.C. Berkeley, C. M. U. &t 454
KEFRA, PUERETERFRIE. JBEY. BERK. HENGRENH, BBE. R
H,ORETRER. B AE5WE. EEEFSENAFITELELEEFROBORE,
L& AEe—AHNHABERIEZEZF:,. ANFL-TERAR. ARCEH2ERNILE
FiahRR., ExSEBERNAMAENESIZT, BELHETENRENERTHEE
MAZE,

WEKES . SHROHEM. —KNEE. PROTER. HaNKEE, SERRERNNVE
HEHTREMRIE, BRNPVEFERERE, MRBHELERRIMEBX - LR BEFNE
EER), BRI RRRINEERSNEA, B3 TV LIRS X AT TIERH
BUBRATIRE, BRITWKRRSEZEMT:

B, Wl : hzjsj@hzbook.com
BEAHIE: (010) 68995264

BRMA: AERTEREE S EEELS
BB 4mES : 100037

ERESERS

v

(e R EEIRT)
A Lt L EHK
INEF % 2 &

FHE FFR FRY BAF
s AR MaB Aki

FIN 2 EmWE)
¥ T 5%) R FESL
£ . A2 B 3% WA A=

To my wife Miriam,
and my children,
Chana, Rivka, Nachum, and Malka.

Preface

0 ne of the best ways to learn about programming is to read well-written pro-
grams. This book teaches the fundamental Linux system call APIs—those

that form the core of any significant program—by presenting code from production
programs that you use every day.

By looking at concrete programs, you can not only see how to use the Linux APIs,
but you also can examine the real-world issues (performance, portability, robustness)
that arise in writing software.

While the book’s title is Linux Programming by Example, everything we cover, unless
otherwise noted, applies to modern Unix systems as well. In general we use “Linux”

to mean the Linux kernel, and “GNU/Linux” to mean the total system (kernel, li-
braries, tools). Also, we often say “Linux” when we mean all of Linux, GNU/Linux

and Unix; if something is specific to one system or the other, we mention it explicitly.

Audience

This book is intended for the person who understands programming and is familiar
with the basics of C, at least on the level of The C Programming Language by Kernighan
and Ritchie. (Java programmers wishing to read this book should understand C pointers,
since C code makes heavy use of them.) The examples use both the 1990 version of
Standard C and Original C.

In particular, you should be familiar with all C operators, control-flow structures,
variable and pointer declarations and use, the string management functions, the use of
exit (), and the <stdio.h> suite of functions for file input/output.

You should understand the basic concepts of standard input, standard output, and
standard error and the fact that all C programs receive an array of character strings
representing invocation options and arguments. You should also be familiar with the
fundamental command-line tools, such as cd, cp, date, 1n, 1s, man (and info if you

Preface

have it), rmdir, and rm, the use of long and short command-line options, environment
variables, and I/O redirection, including pipes.

We assume that you want to write programs that work not just under GNU/Linux
but across the range of Unix systems. To that end, we mark each interface as to its
availability (GLIBC systems only, or defined by POSIX, and so on), and portability
advice is included as an integral part of the text.

The programming taught here may be at a lower level than you're used to; that’s
OK. The system calls are the fundamental building blocks for higher operations and
are thus low-level by nature. This in turn dictates our use of C: The APls were designed
for use from C, and code that interfaces them to higher-level languages, such as C++
and Java, will necessarily be lower level in nature, and most likely, written in C. It may
help to remember that “low level” doesn’t mean “bad,” it just means “more challenging.”

What You Will Learn

This book focuses on the basic APIs that form the core of Linux programming;:

¢ Memory management

» File input/output

» File metadata

* Processes and signals

¢ Users and groups

e Programming support (sorting, argument parsing, and so on)

* Internationalization

* Debugging

We have purposely kept the list of topics short. We believe that it is intimidating to

try to learn “all there is to know” from a single book. Most readers prefer smaller, more
focused books, and the best Unix books are all written that way.
So, instead of a single giant tome, we plan several volumes: one on Interprocess

Communication (IPC) and networking, and another on software development and
code portability. We also have an eye toward possible additional volumes in a Linux

Preface

Programming by Example series that will cover topics such as thread programming and
GUI programming,.

The APIs we cover include both system calls and library functions. Indeed, at the C
level, both appear as simple function calls. A system call is a direct request for system
services, such as reading or writing a file or creating a process. A library function, on the
other hand, runs at the user level, possibly never requesting any services from the oper-
ating system. System calls are documented in section 2 of the reference manual (viewable
online with the man command), and library functions are documented in section 3.

Our goal is to teach you the use of the Linux APIs by example: in particular, through
the use, wherever possible, of both original Unix source code and the GNU utilities.
Unfortunately, there aren’t as many self-contained examples as we thought there’d be.
Thus, we have written numerous small demonstration programs as well. We stress
programming principles: especially those aspects of GNU programming, such as “no
arbitrary limits,” that make the GNU utilities into exceptional programs.

The choice of everyday programs to study is deliberate. If you've been using
GNU/Linux for any length of time, you already understand what programs suchas 1s
and cp do; it then becomes easy to dive straight into how the programs work, without

having to spend a lot of time learning what they do.

Occasionally, we present both higher-level and lower-level ways of doing things.
Usually the higher-level standard interface is implemented in terms of the lower-level
interface or construct. We hope that such views of what’s “under the hood” will help
you understand how things work; for all the code you write, you should always use the
higher-level, standard interface.

Similarly, we sometimes introduce functions that provide certain functionality and
then recommend (with a provided reason) that these functions be avoided! The primary
reason for this approach is so that you’ll be able to recognize these functions when you
see them and thus understand the code using them. A well-rounded knowledge of a
topic requires understanding not just what you can do, but what you should and should
not do.

Finally, each chapter concludes with exercises. Some involve modifying or writing
code. Others are more in the category of “thought experiments” or “why do you
think ...” We recommend that you do all of them—they will help cement your under-

standing of the material.

Preface

Small Is Beautiful: Unix Programs

Hoare’s law:
“Inside every large program is a small program
struggling to get out.”
—C.A.R. Hoare—

Initially, we planned to teach the Linux API by using the code from the GNU utilities.
However, the modern versions of even simple command-line programs (like mv and
cp) are large and many-featured. This is particularly true of the GNU variants of the
standard utilities, which allow long and short options, do everything required by POSIX,
and often have additional, seemingly unrelated options as well (like output highlighting).

It then becomes reasonable to ask, “Given such a large and confusing forest, how
can we focus on the one or two important trees?” In other words, if we present the
current full-featured program, will it be possible to see the underlying core operation
of the program?

That is when Hoare’s law" inspired us to look to the original Unix programs for ex-
ample code. The original V7 Unix utilities are small and straightforward, making it
easy to sce what’s going on and to understand how the system calls are used. (V7 was
released around 1979; it is the common ancestor of all modern Unix systems, including
GNU/Linux and the BSD systems.)

For many years, Unix source code was protected by copyrights and trade secret license
agreements, making it difficult to use for study and impossible to publish. This is still
true of all commercial Unix source code. However, in 2002, Caldera (currently operating
as SCO) made the original Unix code (through V7 and 32V Unix) available under an
Open Source style license (see Appendix B, “Caldera Ancient UNIX License,” page 655).
This makes it possible for us to include the code from the early Unix system in this book.

Standards

Throughout the book we refer to several different formal standards. A standard is a
document describing how something works. Formal standards exist for many things,
for example, the shape, placement, and meaning of the holes in the electrical outlet in

1 This famous statement was made at The International Workshop on Efficient Production of Large Programs in
Jablonna, Poland, August 10-14, 1970.

Preface Xi

your wall are defined by a formal standard so that all the power cords in your country
work in all the outlets. ‘

So, too, formal standards for computing systems define how they are supposed to
work; this enables developers and users to know what to expect from their software and
enables them to complain to their vendor when software doesn’t work. '

Of interest to us here are:

1. ISO/IEC International Standard 9899: Programming Languages — C, 1990.
The first formal standard for the C programming language.

2. ISO/IEC International Standard 9899: Programming Languages — C, Second
edition, 1999. The second (and current) formal standard for the C programming
language.

3. ISO/IEC International Standard 14882: Programming Languages — C++, 1998.
The first formal standard for the C++ programming language.

4. ISO/IEC International Standard 14882: Programming Languages— C++, 2003.
The second (and current) formal standard for the C++ programming language.

5. IEEE Standard 1003.1-2001: Standard for Information Technology — Portable
Operating System Interface (POSIX®). The current version of the POSIX stan-
dard; describes the behavior expected of Unix and Unix-like systems. This
edition covers both the system call and library interface, as seen by the C/C++
programmer, and the shell and utilities interface, seen by the user. It consists

of several volumes:

« Base Definitions. The definitions of terms, facilities, and header files.

e Base Definitions — Rationale. Explanations and rationale for the choice of
facilities that both are and are not included in the standard.

o System Interfaces. The system calls and library functions. POSIX terms them
all “functions.”

« Shell and Utilities. The shell language and utilities available for use with shell
programs and interactively.

Although language standards aren’t exciting reading, you may wish to consider pur-
chasing a copy of the C standard: It provides the final definition of the language. Copies

xii Preface

can be purchased from ANSI* and from I1SO.? (The PDF version of the C standard is
quite affordable.)

The POSIX standard can be ordered from The Open Group.* By working through
their publications catalog to the items listed under “CAE Specifications,” you can find
individual pages for each part of the standard (named “C031” through “C0347). Each
one’s page provides free access to the online HTML version of the particular volume.

The POSIX standard is intended for implementation on both Unix and Unix-like
systems, as well as non-Unix systems. Thus, the base functionality it provides is a subset
of what Unix systems have. However, the POSIX standard also defines optional exen-
sions—additional functionality, for example, for threads or real-time support. Of most
importance to us is the X/Open System Interface (XS) extension, which describes facilities
from historical Unix systems.

Throughout the book, we mark each API as to its availability: ISO C, POSIX, XSI,
GLIBC only, or nonstandard but commonly available.

Features and Power: GNU Programs

Restricting ourselves to just the original Unix code would have made an interesting
history book, but it would not have been very useful in the 21st century. Modern pro-
grams do not have the same constraints (memory, CPU power, disk space, and speed)
that the early Unix systems did. Furthermore, they need to operate in a multilingual
world—ASCII and American English aren’t enough.

More importantly, one of the primary freedoms expressly promoted by the Free
Software Foundation and the GNU Project’ is the “freedom to study.” GNU programs
are intended to provide a large corpus of well-written programs that journeyman pro-

grammers can use as a source from which to learn.

2 http://www.ansi.org
3 http://www.1so.ch
4 http://www.opengroup.org

5 http://www.gnu.org

Preface xiii

By using GNU programs, we want to meet both goals: show you well-written,
modern code from which you will learn how to write good code and how to use the
APIs well.

We believe that GNU software is better because it is free (in the sense of “freedom,”
not “free beer”). But it’s also recognized that GNU software is often rechnically better
than the corresponding Unix counterparts, and we devote space in Section 1.4, “Why
GNU Programs Are Better,” page 14, to explaining why.

A number of the GNU code examples come from gawk (GNU awk). The main
reason is that it’s a program with which we’re very familiar, and therefore it was easy
to pick examples from it. We don’t otherwise make any special claims about it.

Summary of Chapters

Driving a car is a holistic process that involves multiple simultaneous tasks. In many
ways, Linux programming is similar, requiring understanding of multiple aspects
of the API, such as file I/O, file metadata, directories, storage of time information,
and so on.

The first part of the book looks at enough of these individual items to enable studying
the first significant program, the V7 1s. Then we complete the discussion of files and
users by looking at file hierarchies and the way filesystems work and are used.

Chapter 1, “Introduction,” page 3,
describes the Unix and Linux file and process models, looks at the differences be-

tween Original C and 1990 Standard C, and provides an overview of the principles
that make GNU programs generally better than standard Unix programs.

Chapter 2, “Arguments, Options, and the Environment,” page 23,
describes how a C program accesses and processes command-line arguments and
options and explains how to work with the environment.

Chapter 3, “User-Level Memory Management,” page 51,
provides an overview of the different kinds of memory in use and available in a
running process. User-level memory management is central to every nontrivial
application, so it’s important to understand it early on.

Xiv Preface

Chapter 4, “Files and File I/O,” page 83,

discusses basic file I/O, showing how to create and use files. This understanding
is important for everything else that follows.

Chapter 5, “Directories and File Metadata,” page 117,
describes how directories, hard links, and symbolic links work. It then describes
file metadata, such as owners, permissions, and so on, as well as covering how to

work with directories.

Chapter 6, “General Library Interfaces — Part 1,” page 165,
looks at the first set of general programming interfaces that we need so that we
can make effective use of a file’s metadata.

Chapter 7, “Putting It All Together: 1s,” page 207,
ties together everything seen so far by looking at the V7 1s program.

Chapter 8, “Filesystems and Directory Walks,” page 227,
describes how filesystems are mounted and unmounted and how a program
can tell what is mounted on the system. It also describes how a program can
easily “walk” an entire file hierarchy, taking appropriate action for each object

it encounters.

The second part of the book deals with process creation and management, interprocess
communication with pipes and signals, user and group IDs, and additional general
programming interfaces. Next, the book first describes internationalization with GNU

gettext and then several advanced APIs.

Chapter 9, “Process Management and Pipes,” page 283,

looks at process creation, program execution, IPC with pipes, and file descriptor
management, including nonblocking I/O.

Chapter 10, “Signals,” page 347,
discusses signals, a simplistic form of interprocess communication. Signals also
play an important role in a parent process’s management of its children.

Chapter 11, “Permissions and User and Group ID Numbers,” page 403,
looks at how processes and files are identified, how permission checking works,
and how the setuid and setgid mechanisms work.

Preface xv

Chapter 12, “General Library Interfaces — Part 2,” page 427,
looks at the rest of the general APIs; many of these are more specialized than the

first general set of APls.
Chapter 13, “Internationalization and Localization,” page 485,
explains how to enable your programs to work in multiple languages, with almost
no pain.
Chapter 14, “Extended Interfaces,” page 529,
describes several extended versions of interfaces covered in previous chapters, as

well as covering file locking in full detail.

We round the book off with a chapter on debugging, since (almost) no one gets
things right the first time, and we suggest a final project to cement your knowledge of
the APIs covered in this book.

Chapter 15, “Debugging,” page 567,

describes the basics of the GDB debugger, transmits as much of our programming
experience in this area as possible, and looks at several useful tools for doing dif-

ferent kinds of debugging.

Chapter 16, “A Project That Ties Everything Together,” page 641,
presents a significant programming project that makes use of just about everything

covered in the book.

Several appendices cover topics of interest, including the licenses for the source code
used in this book.

Appendix A, “Teach Yourself Programming in Ten Years” page 649,

invokes the famous saying, “Rome wasn’t built in a day.” So too, Linux/Unix ex-
pertise and understanding only come with time and practice. To that end, we
have included this essay by Peter Norvig which we highly recommend.

Appendix B, “Caldera Ancient UNIX License,” page 655,
covers the Unix source code used in this book.

Appendix C, “GNU General Public License,” page 657,
covers the GNU source code used in this book.

Preface

Typographical Conventions

Like all books on computer-related topics, we use certain typographical conventions
to convey information. Definitions or first uses of terms appear in italics, like the word
“Definitions” at the beginning of this sentence. Italics are also used for emphasis, for
citations of other works, and for commentary in examples. Variable items such as argu-
ments or filenames, appear l1ike this. Occasionally, we use a bold font when a point
needs to be made strongly.

Things that exist on a computer are in a constant-width font, such as filenames
(foo. c) and command names (1s, grep). Short snippets that you type are additionally
enclosed in single quotes: ‘1s -1 *.c’.

s and > are the Bourne shell primary and secondary prompts and are used to display
interactive examples. User input appearsina different font from regular computer
output in examples. Examples look like this:

$ 1s -1 Look at files. Option is digit 1, not letter |
foo
bar
baz

We prefer the Bourne shell and its variants (ksh93, Bash) over the C shell; thus, all
our examples show only the Bourne shell. Be aware that quoting and line-continuation
rules are different in the C shell; if you use it, you're on your own!

When referring to functions in programs, we append an empty pair of parentheses
to the function’s name: printf (), strepy (). When referring to a manual page (acces-
sible with the man command), we follow the standard Unix convention of writing the
command or function name in italics and the section in parentheses after it, in regular

type: awk(1), printf(3).

Where to Get Unix and GNU Source Code

You may wish to have copies of the programs we use in this book for your own ex-
perimentation and review. All the source code is available over the Internet, and your
GNU/Linux distribution contains the source code for the GNU utilities.

6 See the csh(1) and #esh(1) manpages and the book Using csh & tesh, by Paul DuBois, O'Reilly & Associates, Se-
bastopol, CA, USA, 1995. ISBN: 1-56592-132-1.

