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PREFACE

HE object of small treatises of this kind is to enable the general

student to gain rapid access to the various branches of Modern
Mathematics, thereby preventing this science from breaking up into
a number of disconnected parts, each belonging to its own specialist
and closed to the outsider. Mathematics must form a whole, any progress
in one of its parts stimulating advance in the others and raising new
problems ; when a branch is severed from the tree, it dies.

In writing this book, I have therefore tried above all to simplify the
work of the student. On the one hand, practically no knowledge is
assumed (merely what concerns existence of real numbers and their
symbolism); on the other hand, the ideas of Cauchy, Riemann, Darboux,
Weierstrass, familiar to the reader who is acquainted with the ele-
mentary theory, are used as much as possible. .

I have also hopes that it will be of some use to the initiated,
who may find here new points of view and greater generality in the
treatment, owing to the idea of integration with respect to a function
in space of n-dimensions. I have not however included what Hobson
and others call the Fundamental Theorem of the Integral Calculus,
namely the connection with the Theory of Derivation.

The Theory of Integration, which forms the subject of this book, has
lIong been one of the most useful tools of Mathematics. Its methods
were already employed with success by the ancient Greeks, in their
investigations about Areas and Volumes. They possessed the method
of exhaustion, the method of series. They were very clear about the
idea of limit and this perhaps made them suspicious of the unsound
method of infinitesimals, as results thus obtained were always estab-
lished independently.

After the Dark Ages the rediscovery of this last method and the use
of the symbolism of Algebra rendered possible the creation of the
Calculus by Newton and Leibnitz. Unfortunately, believing they had
reduced everything to symbols, they did not realise the need of examining
the édeas these represented and testing their soundness. They conceived
their Calculus to be purely formal; limiting process, a mere operation
on symbols. They were very clear as to the properties they expected of
such operations: possibility of operation, existence of inverse operation,
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reversibility of order of two consecutive operations. But they were not
80 clear as to the properties implied of the entities operated on, which
in their case were functions, loosely defined as numbers depending on
variable quantities.

This conception of Mathematics persisted for a long time. In the
nineteenth century, however, the feeling that Mathematics is not the
entire property of the mere Caleculator, but rather that of the Thinker,
revived at last. The result was the development of Geometry, the Theory
of Groups, the Theory of Vectors, the systematic use of the Imaginary.

The Mathematicians of that century naturally also perceived the need
of reforming the Infinitesimal Calculus. The reform was started with
Cauchy’s Theory of Limits, based on Inequalities. Cauchy also intro-
duced the notion of Continuity and attempted to use it as a foundation
for the Calculus. He saw the unsatisfactoriness of the notion, hitherto
adopted, of Integration as Inverse Differentiation: a definition which
is not constructive requires a theorem ensuring the existence and
unicity of the entity in question. Cauchy defined Integration for a
continuous funetion by an always possible limiting process and he proved
that it could be considered as the inverse of Differentiation.

But the occurrence of discontinuous fulictions in certain simple
problems and the discovery, by Weierstrass, of continuoud non-differ-
entiable functions,—by Riemann, of discontinuous integrable functions,
showed that continuity is both inconvenient and unnatural for the
foundation of the Caleulus.

The Theory of Integration and that of Differentiation have since been
built up separately as parts of the New Calculus, the Caleulus of Real
Functions, whose great generality, far from being due to a love of com-
plication on the part of its founders, as was at one time asserted, is to

- be attributed to the simplicity and straightforwardness of its methods

b

This New Calculus would never have been possible but for the wonder-
ful ideas of Cantor;'.at first completely unintelligible to the Mathe-
maticians of the Older Sehool, some of whom even wilfully misunderstood
them and sought to lead others into error with regard to them; but
which, fortunately, very much influenced a few younger men since
become famous. Only too often have ideas of the greatest value been
left for a long time unheeded, while their authors remain in obscurity.
(alois, the founder of the Theory of Groups, was ploughed at the en-

trance examination of the Ecole Polytechnique through knowing more :

LY

than his examiners, and this was only the first of a series of disappoint-

ments which embittered his short life. Grassmann, the creator of the
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theory of vectors, remained a schoolmaster most of his life, and his book,
the “Ausdehnungslehre,” was burned by the publishers, who could find
no buyers.

Cantor’s Theory of Setsof Points and Borel’simprovement of the theory
of content or measure of.such sety paved the way to the semi-geometric
definitions of Integration, given almost simultaneously by Lebesgue and
Young. These definitions represent an extension comparable to that of
Arithmetic on the introduction of irrational numbers. They are sub-
stantially equivalent to the more direct one here adopted, later given by
Young, using the work of Baire on functions.

My father had long thought of writing a connected account of his
theory. In carrying out this task myself at his suggestion, I have tried
to do justice to his ideas and to introduce a few minor improvements
of my own. If I have succeeded in my endeavours, it will have been
largely owing to his encouragement, and to the constant assistance of
my mother and of my sister Miss R. C. H. Young. :

L.CY.

September 1926,
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CHAPTER I
THE METHOD OF MONOTONE SEQUENCES

§ 1. Successions of numbers*.

A set of numbers is said to be bounded if there exist a finite number greater
and & finite number less than all those of the set. The smallest number such
that no number greater than it belongs to the set is called the upper bound of
the set of numbers ; the greatest number such that no smaller number belongs
to the set is called the lower bound of the set. If there is no finite number
greater than all those of the set, the set of numbers is said to be unbounded
above, and we shall agree to say that its upper bound is + « ; similarly, if
there is no finite number less than all those of the set, the set of numbers is
said to be unbounded below, and its lower bound will be —w ,

A countably infinite set of numbers, written down in a definite order,
is called a succession, e.g. .

(yy Gy ooey gy oen s
Repetition of a number is allowed.
A succession is said to be monotone ascending if each term is greater
than or equal to the preceding,
GSUE - Sapg--}
a succession is said to be monotone descending if each term is less than
or equal to the preceding,
<a1>az?--->(lﬂ,).... _

In either case the succession is said to be monotone, or to be a mono-
tome sequence. One.of the bounds of a monotone sequence is clearly its
first term @,. The other is called the unique limit of the monotone
gequence, whether finite or infinite.

(liven any succession S

By Ty weey Ay -y
the succession &S, obtained from it by leaving out its r first terms, has
its bounds K, %, lying between those of the succession S,,, ie.
we have
by $k <K, <K,
Thus, the succession of the upper bounds
K, K,, ... K, ...

* We are dealing with real numbers; 4o and - @ are regarded as distinet.
Y, 1
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is monotone descending. Its unique limit is called the upper limit of
- the succession 8. Similarly, the unique limit of the monotone ascend-
ing sequence of the lower bounds is called the lower limit of 8.

The upper and lower limits of a monotone sequence are equal and
coincide with its unique limit.

For one succession of bounds coincides with the given sequence and the
other consists of terms all equal to the unique limit.

A succession whose upper and lower limits are equal is called a
sequence, and their common value is called the wnique limit of the
sequence. A sequence having a finite limit is said to converge ; otherwise
it diverges. A succession which is not & sequence is said to oscillate.

Given any succession S, we call subsuccession of S a succession of
numbers all belonging to § and occurring in the same order as in 8.
We call subsequenee of § any subsuecession of 8 which is a sequence. .
The unique limit of any subsequence of § is called a limst of S.

TreoreM. The upper and lower limits of & succession are limits of
that succession. W
It is sufficient to prove this for the upper limit.
If the numbers XK, all belong to the succession, the theorem is obvious.
If any one of them does not belong to the succession, all the following
are equal to it, and it is the upper limit*. Let r, be its index, 7, that
of the first term after a,, which is greater than a,,, r. that of the first
term after a,, which is greater than @,, and so on. Then the sub-
succession of §,
Oirgy Qryy +oes
is a monotone sequence whose unique limit is X, , because, by construe-
tion, no term of 8 after a,,can exceed this limit which, being the upper
bound of a subsequence of 8,,, cannot exceed K,,.
TaroREM. The upper and lower limits of a subsuccession of 8§ lie
between those of S.
Let 8 be the given subsuccession. Let S, be the succession obtained
_from 8’ by leaving out its r first terms, and let S, be obtained similarly
from 8.
" Then 8/ is a subsuccession of S, and its bounds K, and %, lie
between those of 8., X,, and £,,
kE<k/'<K'<K,.
This holds for all »; the theorem follows.

* Omitting from a set of numbers & finite number of its elements none of which
eoincide with the upper bound, does not affect the upper bound.
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'CoroLLARY. All the limits of a succession lie between its upper and
its lower limits *.

As a kind of converse of the preceding theorem, we have:

TaEoREM. If a finite number of subsuccessions of S together contain
all the elements of S, they have among their upper and lower limits
those of 8.

It is sufficient to prove this for the case of two subsuccessions and to
consider only the upper limits. Let U be the upper limit of S. Then
there is a subsequence having U as limit and we can so arrange that it
belongs entirely to one of our subsuccessions (see footnote*). U'is there-
fore a. limit of that subsuccession. By the preceding theorem and its
corollary it must therefore be its upper limit.

e-definitions of limits and convergence. 'To define by this method the
upper limit of a bounded succession 8,

@y, A2y <oy Ans --oy
U i3 said to be the upper limit if given any positive number ¢ however
small, an index ¥ can be found such that from and after n =N,
a,sU+e,
while an infinite succession of #’s can be found such that
_ a,2U-e.
Similar definition for lower limit.

Thence the e-definition of limit of a convergent sequence
. U—-e<a,<sU+e
for all # from and after V.

This method, which was known to the Greeks, is probably familiar to
the student, who will easily prove the equivalence of the definitions so
obtained with our former ones.

The characteristic advantage of our method is fo reduce the considera-
tion of all successions to that of monotone sequences.

§ 2. Successions of functions. : . .

Corresponding to any set of numbers, we have on the straight line a set of
pointst; we need only choose an origin, a sense, and a unit of length,

We shall say a point is a limeting point of our set of points, and that the
corresponding number is a limit of the set of numbers, if every interval of
which it is the centre contains an infinite number of points of the set. This
agrees with our definition of limit in the case of a succession. :

* In particular, all the limits of a sequence coincide with its unique limit.
+ This is equivalent to what is called the Cantor-Dedekind axiom.

1—2

%



4 THE THEORY OF INTEGRATION

A set containing all its limiting points is said to be closed. A point belonging
" to a set and not a limiting point is called an isolated point of that set.

After the finite sets, consisting of a finite number of points, and the sequences
and successions of points, the simplest sets are the infervals. An interval con-
sists of all the points between its endpoints. If it includes these it is closed,
if neither, open.

Corresponding to any pair of numbers, we have a point in the plane; corre-
sponding to any set of pairs of numbers, a set of points in the plane. Similarly
any set of numbers given # by n, may be taken to represent a set of points ¢n
n dimensions. We may agree to represent the n coordinates of a point by &
single symbol, and let z stand for the ensemble of the n numbers x, s,
N - »

Two points a=(ay, dz, ..., &) and b=(b,, ..., b,) such that each coordinate
of a is less than the corresponding one of b, define an interval (a, b), consisting
of all the points # whose coordinates all lie between the corresponding co-
ordinates of @ and b, that is the set of points belonging to the rectangle or to
the n-dimensional parallelopiped whose sides are parallel to the axes and which »
has @ and b for its endpoints. The interval is open if it consists only of the
internal points, closed, if of all the points. We shall call length of an interval ~
the length of a principal diagonal. It is convenient to define a strefck to be
either an open interval or the limitjng case of an open interval when one or
more of the inequalities between the coordinates of @ and & are replaced by
equalities. Thus in one dimension a stretch would be either an open interval
or a point ; in two dimensions it would be an open interval, or an open side of
an interval, or a point, etc.

‘When distinction is necessary, we use the symbol ¢ to denote a point on the
straight line. .

Definition of a function. A quantity y is said to be a function of #, in an
interval (a, b), if to each & of that interval corresponds a single value .

‘We use the symbol f(x) to denote a function of .

A function is said to be bounded if the set of numbers consisting of all its
values is bounded.

If corresponding to each point # we are given a succession of numbers
J1(@), fz(2), ..., these may be said to define a succession of functions.

The upper bound K (#) of the numbers corresponding to the point
define a new function, which we call the upper bounding function of
the succession of functions.

Similarly we define the lower bounding function.

The upper limit U (2) of the numbers f; (), /; (), ... corresponding
to the point # defines a new function, which we call the upper function
of the succession of functions.

Similarly we define the lower function.

The suceession of functions is called a sequence, if its upper and lower
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functions are identical. They are then called the Zimiting function of
the sequence.

The succession of functions is said to be a monotone ascending
sequence if the numbers corresponding to each # form an ascending
sequence; it is said to be monotone descending if they form a monotone
descending sequence. In either case the succession of functions is
called a monotone sequence of functions. ‘

Given any succession of functions, the upper bounding function K,.()
of the succession obtained by leaving out the # first functions, generates
as r increases & monotone descending sequence which converges to the
upper function U (%), and the corresponding monotone ascending se-
guence of the lower bounding functions, converges to the lower function.

We have thus again reduced the consideration of all successions of
Junctions to that of monotone sequences of functions.

In the case of monotone sequences of functions one bounding function
is the first function, the other is the limiting function.

The convergence of a sequence of functions is said to be bounded if
the bounding functions are bounded. The functions of the sequence
are then said to be uniformly bounded.

The convergence of a sequence of finctions Jn () to a limiting func-
tion 7 () in & closed interval is said to be uniform if, given any positive
number ¢, an index N independent of 2 can be found such that, for all
n from and after NV,

|/ (@) —f(2)] <e for all 2.

It is uniform in an open interval if uniform in every closed com-
ponent interval. (See Appendix, 1, p. 44, last 18 lines and seq.)

§ 3. Limits of a function at a point. The upper and lower
bounds of & set of numbers consisting of all the values of a function in
an interval are called the upper and lower bounds of the function in
that interval. Between them lie the bounds of the function in any
interval interior to that interval.

Let 2, be any point interior to the interval of definition (a, b). Let
Wy, We, --., Wr, ... be any succession of intervals having 2, as internal
point and whose lengths converge to zero, each interval being contained
in the preceding. Let M., m, denote respectively the upper and lower
bounds of the values of the function in w,, excluding the point 2,.
As rincreases they form two monotone sequences of numbers and their
limits, & and L respectively, are called the upper and the lower limits

“©
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of the function at the point x,. These limits are independent of the
- choice of the succession of intervals®.

For consider two successions of iqtérva,ls Wy, Wy, ... and wy, Wy, ..o;
let the corresponding limits be U, L and U’, L. ‘

There cannot be more than a finite number of intervals of the second
succession not interior to w,. Since r is arbitrary U’, L’ therefore lie
between U and L.

But, reversing the roles of the two successions, U, Llie between U”, L.
Hence U=U", L=L. :

If in the definition of upper and lower limits at a point , instead of
intervals containing the point z,, we consider intervals (open or closed)
having z, for a corner-point and as before each contained in the pre-
ceding and with length decreasing to zero—this defines corresponding
to each quadrantt (open or closed) at , a unique pair of upper and .
lower limits (or limits of approach) in that (open or closed) quadrant.

In the case of an internal point of the interval of definition the upper
and lower limits at the point are respectively equal to the greatest and to
the least of the upper and lower limits in the various closed quadrants
at the point. We may use this to define the upper and lower limits
at every point of the closed interval of definition.

We thus have, in all cases, corresponding to each point # of the
interval of definition, three numbers, the value of the function and its
upper and lower limits,

It is obvious that the greatest and the least} of these three numbers
are respectively the limits of the upper and lower bounds of the function
in any succession of intervals of lengths decreasing to zero, the point «
being internal to all of them (the value at @ is not excluded). If the

* Also each ipterval need not lie in the preceding provided they ultimately shrink ‘
up to x,. For let u; be the smallest interval containing all those of the succession,
uy the smallest interval containing all except wy, ete. Then u,, ug, ... are each
inside the preceding and shrink up to #,. Again if v, is w,, v, the largest interval
inside w; which has no points outside wy, ..., v, the largest interval in w, having no
points outside v,_;, then v, v, ... are a succession of intervals each inside the pre
ceding and shrinking up to z,. Also clearly

Uy, 2> Wy, 2>V,
Hence the limits for w, lie between the corresponding limits for , and v, which
coincide.

+ By quadrant at a point we mean, in one dimension, one or other of the two sides
of the point; in n dimensions, an angle determined by # parallels to the axes through
the point.

T They are sometimes called the maximum and minimum limits and their
difference is sometimes called the jump of the function at the point x.
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value at the point is the greatest, it is also the limit of the upper bounds
of the function in any succession of closed intervals which have 2z as
corner-point, and whose lengths decrease to zero. In that case the
function is said to be upper semicontinuous at the point #. Similarly, if
the value of the function is the least of the three numbers, the function
18 said to be lower semicontinuous at the point.

Similarly we may define upper and lower semicontinuity in a closed
or open quadrant at a point.

If a function is both upper and lower semicontinuous at a point and
its value there is finite, it is said to be continuwous* at the point. Other-
wise the function is déscontinuous at the point.

§4. Semicontinuity and the theorem of bounds. A function
is said to be upper semicontinuous in an interval if it is upper semi-
continuous at every point of the interval. We shall call it a U-function.

A function is said to be lower semicontinuous in an interval if it is
lower semicontinuous at every point of the interval. We shall call it an
L-function.

In either case it is said to be semicontinuous in the interval. A function
which is both an L and a U and assumes only finite values is said to
be continuous.

o-definition of semicontinuity at @ point. A function f () is said to
be upper semicontinuous at the point a, if, given any positive quantity e,
there is an interval having z, as middle point throughout which if f(z,)

's finite F@)<S@)+e }
while, if f(#,)is — o, (0).
f@)<—1/e

A function f(2) is said to be lower semicontinuous at the point =, if,
given any positive quantity ¢, there is an interval having #, as middle
point, thronghout which, if f(a,) is finite,
S @) 2f (@) e,

(L)-

f(@)>1/e
If f(#,) is + o, then f() is certainly upper semicontinuous at z,;
if f(a;) is — o0, then /(@) is certainly lower semicontinuous at .
TrrorEM. An L-function assumes its lower bound in every closed
interval ; a U-function, its upper bound.
Divide the given interval into two equal parts. If m is the lower
bound of our Z-function in the given closed interval, it is also its lower

* Seg Appendix, 1.

while, if F (wo) is + o,
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bound in at least one of these closed subintervals. Let W, be the first

- having this property. Again divide W, into two equal parts, and let W,
be the first of these closed subintervals of W, in which 7 is again the
lower bound. And so on.

The succession of intervals

Wy, Woy ooy W, ...
consists of closed intervals, each contained in the preceding, and whose
lengths decrease to zero. There is exactly one point common to all of
them. The value of our L-funetion at that point is therefore the limit
of its lower bounds in the succession of intervals, that is to say m. Q&.D.

Similarly, we may prove the corresponding theorem for U-functions.

The theorem of bounds.

If /i(z), f2(2), ..., is a monotone ascending sequence of functions
having /(#) as limiting function; if u, and /, are respectively the upper
and the lower bounds of f,(2) in a fixed closed interval, » and 7 those "
of /() in the same interval, then

lime,=% while limi,<1Z
Moreover, if the functions are all Z-functions, then
lim /7, =1

It is obvious that if £, is never greater than f,, the same is true of

their bounds. Hence
MSUS...Su;, LhShs...<

Therefore mu,<%u; lml, <.

But if 4 is any quantity less than w, there are points # such that
J(@)>A. Atany such point #, we have, since f, («) converges to f(z),
Jn (@) > A from and after a certain fy (). Therefore, a fortiori,

' limu,> A4,
or, since 4 was any quantity less than », lim w, > u.

Therefore limu,=w, while lim/,<Z

In the case in which the functions f, are L-functions, we ¢an find a
point #, where f, assumes its lower bound. Let 2’ be any limiting
point of the #,, and let B be any quantity less than f(2'). Then

Ju(2)> B
from and after a certain /.. There is therefore an interval surrounding 2’
throughout which, since fy- is an L-function, fy () is greater than B.
In that same interval, by monotony,

Ju(x)>B
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from and after .. In this interval there are an infinite number of the
points 2, with indices greater than V'. Therefore, if N” is the first of

these, then -
Suwr(@yr) =lyr> B,
Therefore, a fortiori,

lim 7, > B.
Since B was any number less than f(2'),
S (@) <lim 4,,
and, a fortiori,
I<lml/,.
CHAPTER II

THE GENERATION OF FUNCTIONS

§ 1. 'The simple functions. The simplest functions are the con-
stants; the value of ¥ is the same for all 2.

. The next simplest functions are tke functions constant in stretches,
whose interval of definition is the sum of a finite number of stretches
inside each of which the function is a finite constant. By a stretch we
mean, as explained on p. 4, an open interval or a kind of limiting case
of an open interval, such as a point.

A function constant in stretches is not in general semicontinuous.

For example, the function defined in the interval (0, 1), whose value in the
open interval (0, 1/2) is O, whose value at the point 1/2 is 1/2, whose value in
the open interval (1/2, 1) is 1, is not semicontinuous at the point 1/2.

A function constant in stretches will certainly be lower semicon-
tinuous at every point of its interval of definition if its value in every
stretch which is'not an interval is equal to the least of the values in the
neighbouring intervals. It is then called a simple L-function.

Similarly, we call simple U-function a function constant in stretches
whose value in every stretch which is not an interval is the greatest of
the values in the neighbouring intervals.

These two types of simple functions have the following properties :

(i) The sum of two functions of the same type is of that type.

(ii) The function equal to the greater of two functions of the same
type, and the function equal to the smaller of two functions of the same
type, at each point, are.of that type.
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(iii) Change of sign transfers each type to the twin type.
These properties we shall refer to as the three fundamental properties
of class.

§2. The generation of general semicontinuous functions
by monotone sequences of simple functions.

TaeoREM. Any L-function bounded below is expressible as the limit
of a monotone ascending sequence of simple L-functions and also as the
limit of such a sequence of simple U-functions.

Let () be the given L-function, defined in the interval (e, b). Let
m be 1ts lower bound.

We divide (a, b) into two equal parts and we call m';, m"; the lower

“bounds of f(2) in each of these parts, the common boundary points
being taken to belong to both.

We again bisect each of the parts.

(In the case of several variables we bisect in turn the range of each
of them.)

Let m';, m"y, m"”'5, m"™5, be the bounds so obtained, and so on.

If at any stage, the nth say, one of these numbers be infinite, we
réplace it by the greatest of all the preceding plus z. In that case f(2)
would have to be infinite (+ o ) in thewhole of the corresponding interval.

Let a, (), b, (z) be the constant m.

Let a, (%), b, () be respectively the simple Z-function and the simple
U-function which are equal to =", in the first half of (a, 5) and to m"; in
the second half, their values at the common boundary points* being of
course respectively the smallest and the largest of these two numbers.

Let a, (), by (x) be respectively the simple L-function and the simple
U-function equal to m'; in the first quarter of (a, b), to m", in the second,
and so on.

The two sequences of functions,

a, (x), a, (@), ay(x),...,

bo ($)7 bl (.Z'), b2 (‘ZI)! A ]
aremonotoneascending. Thevalues of their limiting fanction at anypoint
2 are in both cases equal to the limits of the lower bounds of /' (#) in one or
more successions of closed intervals each contained in the preceding and
whose lengths tend to zero, and such that # is common to all of them.

Since f(#) is semicontinuous the limiting functions therefore both
coincide with /#(z). Q.E.D. 4

Similarly we can establish the corresponding

‘ * At which alone they differ.
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TrroreM. Any U-function bounded above is expressible as the limit
of a monotone descending sequence of simple U-functions, and also as
the limit of such a sequence of simple L-functions. '

The converse of these theorems is not true. Monotone sequences of
simple functions do not in general define semicontinuous functions.
It is, however, easy to show that monotone ascending sequences of simple
L-functions always define L-functions, while monotone descending se-

quences of simple U-functions always define U-functions. More generally,
we have

TrEorREM. The limiting function of a monotone ascending sequence
of L-functions is an L-function.

Let /. () be the generic function of the sequence, and f(2) the
limiting function. Since fis never less than £,, the same is true of their
lower bounds in any interval and consequently of their lower limits at
any point. Let / be the lower limit of f(2,) at the point #,. Since f, is

- semicontinuous, f, (2,) is smaller than or equal to the lower limit of £,
at z,. 'Therefore, a fortiori,
' Ja (@) <.

This is true for all n. Therefore

S(z) <l

Similarly we can prove the corresponding

TarorEM. The limit of a monotone descending sequence of U-functions
is itself a U-function.

The two types of semicontinuous functions are easily seen to possess
the three fundamentol properties of class.

i, The sum of two functions of the same type is of that type.

If f and g are two L-functions bounded below they are the limits of two
monotone sequences of simple LZ-functions

.fl) fZ’ sy J1y G25 eees
their sum is therefore the limit of the monotone ascending sequence
Sfitgy fatges .

of simple Z-functions, i.e. an L-function*.

If 7 and g are not bounded below, every point, where neither assumes the
value — o, is internal to an interval where both are bounded below.

At a point where one assumes this value, the other being different from + o,
the sum assumes the value — w0, and is consequently lower semicontinuous.

At a point where one function assumes the value —oc, and the other the
value + oo, the sum is not defined.

Similarly we prove the theorem for U-functions.

* The same reasoning establishes the property for any type of functions defined
by monotone sequences of functions belonging to a type which has the property.

* %



